Force-Induced Unravelling of DNA Origami

被引:49
作者
Engel, Megan C. [1 ]
Smith, David M. [2 ]
Jobst, Markus A. [3 ]
Sagutdinow, Martin [2 ]
Liedl, Tim [3 ]
Romano, Flavio [4 ]
Rovigatti, Lorenzo [1 ,5 ,6 ]
Louis, Ard A. [1 ]
Doye, Jonathan P. K. [7 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England
[2] Fraunhofer Inst Cell Therapy & Immunol IZI, Perlickstr 1, D-04103 Leipzig, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Phys, Amalienstr 54, D-80799 Munich, Germany
[4] Univ Ca Foscari Venezia, Dipartimento Sci Mol & Nanosistemi, Via Torino 155, I-30172 Venice, Italy
[5] Uos Sapienza, CNR ISC, Piazzale A Moro 2, I-00185 Rome, Italy
[6] Sapienza Univ Roma, Dipartimento Fis, Piazzale A Moro 2, I-00185 Rome, Italy
[7] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
DNA nanotechnology; DNA origami; self-assembly; molecular dynamics; coarse-grained modeling; single molecule force spectroscopy; AFM; SINGLE-STRANDED-DNA; ELASTIC PROPERTIES; FREE-ENERGIES; B-DNA; SPECTROSCOPY; TENSEGRITY; BINDING; SHAPES; MOTION; FLEXIBILITY;
D O I
10.1021/acsnano.8b01844
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanical properties of DNA nano structures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently proposed origami biosensor, whose function takes advantage of origami behavior under tension. We observe characteristic stick slip unfolding dynamics in our force extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inward for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces and what design principles can be applied to enhance stability.
引用
收藏
页码:6734 / 6747
页数:14
相关论文
共 101 条
[1]   Determination of the Elastic Properties of Short ssDNA Molecules by Mechanically Folding and Unfolding DNA Hairpins [J].
Alemany, Anna ;
Ritort, Felix .
BIOPOLYMERS, 2014, 101 (12) :1193-1199
[2]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[3]   Programmed folding of DNA origami structures through single-molecule force control [J].
Bae, Wooli ;
Kim, Kipom ;
Min, Duyoung ;
Ryu, Je-Kyung ;
Hyeon, Changbong ;
Yoon, Tae-Young .
NATURE COMMUNICATIONS, 2014, 5
[4]  
Bauer M. S., 2018, BIORXIV, DOI [DOI 10.1101/276444, 10.1101/276444]
[5]  
Baumann F, 2016, NAT NANOTECHNOL, V11, P89, DOI [10.1038/NNANO.2015.231, 10.1038/nnano.2015.231]
[6]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[7]   DNA Origami Nanopores [J].
Bell, Nicholas A. W. ;
Engst, Christian. R. ;
Ablay, Marc ;
Divitini, Giorgio ;
Ducati, Caterina ;
Liedl, Tim ;
Keyser, Ulrich F. .
NANO LETTERS, 2012, 12 (01) :512-517
[8]  
Blakely BL, 2014, NAT METHODS, V11, P1229, DOI [10.1038/nmeth.3145, 10.1038/NMETH.3145]
[9]   Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions [J].
Bosco, Alessandro ;
Camunas-Soler, Joan ;
Ritort, Felix .
NUCLEIC ACIDS RESEARCH, 2014, 42 (03) :2064-2074
[10]   Theory of rapid force spectroscopy [J].
Bullerjahn, Jakob T. ;
Sturm, Sebastian ;
Kroy, Klaus .
NATURE COMMUNICATIONS, 2014, 5