Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields

被引:141
作者
Koc, CK [1 ]
Sunar, B [1 ]
机构
[1] Oregon State Univ, Dept Elect & Comp Engn, Corvallis, OR 97331 USA
关键词
finite fields; multiplication; normal basis; canonical basis; all-one-polynomial;
D O I
10.1109/12.660172
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new low-complexity bit-parallel canonical basis multiplier for the field GF(2(m)) generated by an all-one-polynomial. The proposed canonical basis multiplier requires m(2) - 1 XOR gates and m(2) AND gates. We also extend this canonical basis multiplier to obtain a new bit-parallel normal basis multiplier.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 9 条
  • [1] MODULAR CONSTRUCTION OF LOW COMPLEXITY PARALLEL MULTIPLIERS FOR A CLASS OF FINITE-FIELDS GF(2(M))
    HASAN, MA
    WANG, MZ
    BHARGAVA, VK
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (08) : 962 - 971
  • [2] A MODIFIED MASSEY-OMURA PARALLEL MULTIPLIER FOR A CLASS OF FINITE-FIELDS
    HASAN, MA
    WANG, MZ
    BHARGAVA, VK
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (10) : 1278 - 1280
  • [3] STRUCTURE OF PARALLEL MULTIPLIERS FOR A CLASS OF FIELDS GF(2M)
    ITOH, T
    TSUJII, S
    [J]. INFORMATION AND COMPUTATION, 1989, 83 (01) : 21 - 40
  • [4] Lidl R., 1994, INTRO FINITE FIELDS
  • [5] Mastrovito E. D., 1988, P 6 INT C APPL ALG A, P297
  • [6] Menezes A. J., 1993, APPL FINITE FIELDS
  • [7] Omura J.K., 1986, U.S. Patent, Patent No. [US 4,587,627, 4587627]
  • [8] PAAR C, 1994, THESIS U GH ESSEN
  • [9] VLSI ARCHITECTURES FOR COMPUTING MULTIPLICATIONS AND INVERSES IN GF(2M).
    Wang, Charles C.
    Truong, T.K.
    Shao, Howard M.
    Deutsch, Leslie J.
    Omura, Jim K.
    Reed, Irving S.
    [J]. IEEE Transactions on Computers, 1985, C-34 (08) : 709 - 717