A novel crystal plasticity model incorporating transformation induced plasticity for a wide range of strain rates and temperatures

被引:28
作者
Connolly, D. S. [1 ]
Kohar, C. P. [1 ]
Inal, K. [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
关键词
Transformation induced plasticity; Thermo-mechanical modeling; Crystal plasticity; Strain-rate dependence; Temperature dependence; INDUCED MARTENSITIC-TRANSFORMATION; TRIP-STEEL; PHASE-TRANSFORMATION; RETAINED AUSTENITE; DEFORMATION-BEHAVIOR; MECHANICAL STABILITY; DEPENDENCE; POLYCRYSTALS; DIFFRACTION; EVOLUTION;
D O I
10.1016/j.ijplas.2021.103188
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Transformation induced plasticity (TRIP) is an effect common to several classes of advanced high strength steels (AHSS) with promising automotive applications. This effect is characterized by the transformation of retained austenite (RA) to martensite, resulting in increased hardening, increased fracture resistance, and improved formability. Accurate thermo-mechanical modeling over a range of strain-rates and temperatures is critical to fully utilize the improved performance of AHSS exhibiting the TRIP effect. In this work, a novel thermodynamically consistent rate-dependent crystal plasticity formulation is developed, which incorporates strain-rate and temperature dependent strain-induced martensitic transformation. Thermodynamic arguments are used to derive plastic slip and transformation driving forces accounting for various physical mechanisms (e.g. applied stress, temperature, crystal orientation, stored dislocation energy), as well as a constitutive law governing temperature evolution. RA and transformed martensite mechanical thermo-elasto-viscoplastic behavior is explicitly modeled, and a modified Taylor homogenization law is proposed to determine strain partitioning while accounting for transformation. The model is then calibrated and validated for a QP3Mn alloy over a large range of temperatures (-10 degrees C-70 degrees C) and strain-rates (5 x 1(0-4) S-1-200 S-1). The evolution of the Taylor-Quinney coefficient and the orientation dependence of transformation are found to match well with trends in literature. The fully calibrated model is compared to a model recalibrated without strain-rate dependent transformation, demonstrating that capturing strain-rate dependent transformation may be necessary even for materials where no direct experimental strain-rate dependence. Plane strain and equibiaxial tension simulations are conducted using the calibrated model, showing that increasing triaxiality results in increased transformation. An extension to the calibrated model is proposed for materials which do not match the predicted trend.
引用
收藏
页数:32
相关论文
共 61 条
[1]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[2]   Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation [J].
Beese, Allison M. ;
Mohr, Dirk .
ACTA MATERIALIA, 2011, 59 (07) :2589-2600
[3]  
BISHOP JFW, 1951, PHILOS MAG, V42, P1298
[4]  
Callen H.B., 1998, AM J PHYS, DOI DOI 10.1119/1.19071
[5]   Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals [J].
Cherkaoui, M ;
Berveiller, M ;
Sabar, H .
INTERNATIONAL JOURNAL OF PLASTICITY, 1998, 14 (07) :597-626
[6]   Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels [J].
Cherkaoui, M ;
Berveiller, M ;
Lemoine, X .
INTERNATIONAL JOURNAL OF PLASTICITY, 2000, 16 (10-11) :1215-1241
[7]   Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation [J].
Clayton, JD .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (02) :261-301
[8]   THE THERMODYNAMICS OF ELASTIC MATERIALS WITH HEAT CONDUCTION AND VISCOSITY [J].
COLEMAN, BD ;
NOLL, W .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1963, 13 (03) :167-178
[9]   A coupled thermomechanical crystal plasticity model applied to Quenched and Partitioned steel [J].
Connolly, Daniel S. ;
Kohar, Christopher P. ;
Muhammad, Waqas ;
Hector, Louis G., Jr. ;
Mishra, Raja K. ;
Inal, Kaan .
INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 133
[10]   A new coupled thermomechanical framework for modeling formability in transformation induced plasticity steels [J].
Connolly, Daniel S. ;
Kohar, Christopher P. ;
Mishra, Raja K. ;
Inal, Kaan .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 103 :39-66