Long range electronic phase separation in CaFe3O5

被引:27
作者
Hong, Ka. H. [1 ,2 ]
Arevalo-Lopez, Angel M. [3 ]
Cumby, James [1 ,2 ]
Ritter, Clemens [4 ]
Attfield, J. Paul [1 ,2 ]
机构
[1] Univ Edinburgh, Ctr Sci Extreme Condit, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Chem, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Artois, Univ Lille, CNRS, Cent Lille,ENSCL,UCCS,UMR 8181, F-59000 Lille, France
[4] Inst Laue Langevin, 71 Ave Martyrs, F-38000 Grenoble, France
基金
英国科学技术设施理事会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
TRANSITION; CRYSTAL; FERRITE;
D O I
10.1038/s41467-018-05363-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Incomplete transformations from ferromagnetic to charge ordered states in manganite perovskites lead to phase-separated microstructures showing colossal magnetoresistances. However, it is unclear whether electronic matter can show spontaneous separation into multiple phases distinct from the high temperature state. Here we show that paramagnetic CaFe3O5 undergoes separation into two phases with different electronic and spin orders below their joint magnetic transition at 302 K. One phase is charge, orbital and trimeron ordered similar to the ground state of magnetite, Fe3O4, while the other has Fe2+/Fe3+ charge averaging. Lattice symmetry is unchanged but differing strains from the electronic orders probably drive the phase separation. Complex low symmetry materials like CaFe3O5 where charge can be redistributed between distinct cation sites offer possibilities for the generation and control of electronic phase separated nanostructures.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Strain-induced metal-insulator phase coexistence in perovskite manganites [J].
Ahn, KH ;
Lookman, T ;
Bishop, AR .
NATURE, 2004, 428 (6981) :401-404
[2]  
Attfield J. P., 2015, APL MATER, V3, P1
[3]   Charge ordering in transition metal oxides [J].
Attfield, J. Paul .
SOLID STATE SCIENCES, 2006, 8 (08) :861-867
[4]   VALENCE: A program for calculating bond valences [J].
Brown, ID .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1996, 29 :479-480
[5]  
Burgy J., 2004, PHYS REV LETT, V92, P3
[6]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[7]   Colossal magnetoresistant materials: The key role of phase separation [J].
Dagotto, E ;
Hotta, T ;
Moreo, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (1-3) :1-153
[8]   Structural Transition at 360 K in the CaFe5O7 Ferrite: Toward a New Charge Ordering Distribution [J].
Delacotte, C. ;
Huee, F. ;
Breard, Y. ;
Hebert, S. ;
Perez, O. ;
Caignaert, V. ;
Greneche, J. M. ;
Pelloquin, D. .
INORGANIC CHEMISTRY, 2014, 53 (19) :10171-10177
[9]   THE SYNTHESIS OF A NEW CALCIUM FERRITE (CAFE4O6) AND DETERMINATION OF CALCIUM-FERRITE CRYSTALLINE-STRUCTURES (CAFE2+NO4+N) - A NEW EXAMPLE OF THE INTERGROWTH PROCESS [J].
EVRARD, O ;
MALAMAN, B ;
JEANNOT, F ;
COURTOIS, A ;
ALEBOUYEH, H ;
GERARDIN, R .
JOURNAL OF SOLID STATE CHEMISTRY, 1980, 35 (01) :112-119
[10]  
Guzman-Verri G. G., 2017, ARXIV170102318