Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification

被引:57
作者
Ghahremani, Parmida [1 ]
Li, Yanyun [2 ]
Kaufman, Arie [1 ]
Vanguri, Rami [2 ]
Greenwald, Noah [3 ]
Angelo, Michael [3 ]
Hollmann, Travis J. [2 ]
Nadeem, Saad [4 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USA
[3] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
关键词
NUCLEI;
D O I
10.1038/s42256-022-00471-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiplex immunofluorescence imaging can provide a wealth of data compared to immunohistochemical staining, which is cheaper and more widely available. Ghahremani et al. present DeepLIIF, a GAN-based cell segmentation and classification approach, which is trained on co-registered images of these two modalities to provide the insights from the more data-rich muliplex data from simpler IHC images. Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic pathology laboratories for patient care. So far, however, clinical reporting is predominantly qualitative or semi-quantitative. By creating a multitask deep learning framework, DeepLIIF, we present a single-step solution to stain deconvolution/separation, cell segmentation and quantitative single-cell IHC scoring. Leveraging a unique de novo dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and translate low-cost and prevalent IHC slides to more informative, but also more expensive, mpIF images, while simultaneously providing the essential ground truth for the superimposed brightfield IHC channels. A new nuclear-envelope stain, LAP2beta, with high (>95%) cell coverage is also introduced to improve cell delineation/segmentation and protein expression quantification on IHC slides. We show that DeepLIIF trained on clean IHC Ki67 data can generalize to noisy images as well as other nuclear and non-nuclear markers.
引用
收藏
页码:401 / +
页数:30
相关论文
共 38 条
[1]  
Abousamra S, 2020, I S BIOMED IMAGING, P481, DOI [10.1109/ISBI45749.2020.9098652, 10.1109/isbi45749.2020.9098652]
[2]   ANHIR: Automatic Non-Rigid Histological Image Registration Challenge [J].
Borovec, Jiri ;
Kybic, Jan ;
Arganda-Carreras, Ignacio ;
Sorokin, Dmitry V. ;
Bueno, Gloria ;
Khvostikov, Alexander V. ;
Bakas, Spyridon ;
Chang, Eric I-Chao ;
Heldmann, Stefan ;
Kartasalo, Kimmo ;
Latonen, Leena ;
Lotz, Johannes ;
Noga, Michelle ;
Pati, Sarthak ;
Punithakumar, Kumaradevan ;
Ruusuvuori, Pekka ;
Skalski, Andrzej ;
Tahmasebi, Nazanin ;
Valkonen, Masi ;
Venet, Ludovic ;
Wang, Yizhe ;
Weiss, Nick ;
Wodzinski, Marek ;
Xiang, Yu ;
Xu, Yan ;
Yan, Yan ;
Yushkevich, Paul ;
Zhao, Shengyu ;
Munoz-Barrutia, Arrate .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (10) :3042-3052
[3]   SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning [J].
Burlingame, Erik A. ;
McDonnell, Mary ;
Schau, Geoffrey F. ;
Thibault, Guillaume ;
Lanciault, Christian ;
Morgan, Terry ;
Johnson, Brett E. ;
Corless, Christopher ;
Gray, Joe W. ;
Chang, Young Hwan .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[5]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[6]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[7]   Distribution Matching Losses Can Hallucinate Features in Medical Image Translation [J].
Cohen, Joseph Paul ;
Luck, Margaux ;
Honari, Sina .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :529-536
[8]   Deep learning-based transformation of H&E stained tissues into special stains [J].
de Haan, Kevin ;
Zhang, Yijie ;
Zuckerman, Jonathan E. ;
Liu, Tairan ;
Sisk, Anthony E. ;
Diaz, Miguel F. P. ;
Jen, Kuang-Yu ;
Nobori, Alexander ;
Liou, Sofia ;
Zhang, Sarah ;
Riahi, Rana ;
Rivenson, Yair ;
Wallace, W. Dean ;
Ozcan, Aydogan .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   The Human Protein Atlas-Spatial localization of the human proteome in health and disease [J].
Digre, Andreas ;
Lindskog, Cecilia .
PROTEIN SCIENCE, 2021, 30 (01) :218-233
[10]  
Fassler DJ, 2020, DIAGN PATHOL, V15, DOI 10.1186/s13000-020-01003-0