Exploration of Different Attention Mechanisms on Medical Image Segmentation

被引:3
作者
Tian, Jie [1 ]
Wu, Kaijie [1 ]
Ma, Kai [1 ]
Cheng, Hao [1 ]
Gu, Chaocheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, 800 Dongchuan Rd, Shanghai, Peoples R China
来源
NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV | 2019年 / 1142卷
基金
国家重点研发计划;
关键词
Deep learning; Attention mechanism; Medical image segmentation;
D O I
10.1007/978-3-030-36808-1_65
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, medical image segmentation plays an important role in computer-aided medical diagnosis. To realize effective segmentation, Attention Mechanism (AM) is widely adopted. It can be trained to automatically highlight salient features and integrated into convolution neural networks conveniently. However, many researchers choose the attention mechanism without sufficient theoretical interpretability. They ignore the differences and dominant characteristics between various datasets, which causes the failure to select the most appropriate one. In this paper, we explore the implementation and discrimination of four specific attention mechanisms. To evaluate their performances, we incorporate these mechanisms within the U-Net and make a comparison on three medical image datasets. The experimental results show that all these attention mechanisms can improve the value of Mean IoU. More significantly, we find the best AM for each type of dataset and analyze the reasons for different performances from underlying mathematical principles.
引用
收藏
页码:598 / 606
页数:9
相关论文
共 22 条
  • [1] WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians
    Bernal, Jorge
    Javier Sanchez, F.
    Fernandez-Esparrach, Gloria
    Gil, Debora
    Rodriguez, Cristina
    Vilarino, Fernando
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 : 99 - 111
  • [2] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [3] Attention to Scale: Scale-aware Semantic Image Segmentation
    Chen, Liang-Chieh
    Yang, Yi
    Wang, Jiang
    Xu, Wei
    Yuille, Alan L.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3640 - 3649
  • [4] Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
  • [5] SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning
    Chen, Long
    Zhang, Hanwang
    Xiao, Jun
    Nie, Liqiang
    Shao, Jian
    Liu, Wei
    Chua, Tat-Seng
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6298 - 6306
  • [6] Dual Attention Network for Scene Segmentation
    Fu, Jun
    Liu, Jing
    Tian, Haijie
    Li, Yong
    Bao, Yongjun
    Fang, Zhiwei
    Lu, Hanqing
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3141 - 3149
  • [7] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
  • [8] Hu Y, 2018, BLOCKCHAIN BASED SMA
  • [9] A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology
    Kumar, Neeraj
    Verma, Ruchika
    Sharma, Sanuj
    Bhargava, Surabhi
    Vahadane, Abhishek
    Sethi, Amit
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (07) : 1550 - 1560
  • [10] Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation
    Lin, Guosheng
    Shen, Chunhua
    van den Hengel, Anton
    Reid, Ian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3194 - 3203