Modulated amplitude waves and the transition from phase to defect chaos

被引:55
作者
Brusch, L
Zimmermann, MG
van Hecke, M
Bär, M
Torcini, A
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Illes Balears, CSIC, IMEDEA, E-07071 Palma de Mallorca, Spain
[3] Niels Bohr Inst, Ctr Chaos & Turbulence Studies, DK-2100 Copenhagen, Denmark
[4] Ist Nazl Fis Mat, Unita Firenze, I-50125 Florence, Italy
关键词
D O I
10.1103/PhysRevLett.85.86
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mechanism for transitions from phase to defect chaos in the one-dimensional complex Ginzburg-Landau equation (CGLE) is presented. We describe periodic coherent structures of the CGLE, called modulated amplitude waves (MAWs). MAWs of various periods P occur in phase chaotic states. A bifurcation study of the MAWs reveals that for sufficiently large period, pairs of MAWs cease to exist via a saddle-node bifurcation. For periods beyond this bifurcation, incoherent near-MAW structures evolve towards defects. This leads to our main result: the transition from phase to defect chaos takes place when the periods of MAWs in phase chaos an driven beyond their saddle-node bifurcation.
引用
收藏
页码:86 / 89
页数:4
相关论文
共 20 条
[1]  
BAZHENOV M, 1994, PHYS LETT A, V163, P87
[2]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[3]   SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H .
NONLINEARITY, 1994, 7 (01) :185-204
[4]  
Chate H, 1995, SFI S SCI C, V21, P33
[5]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[6]  
DOEDEL EJ, 1994, AUTO 94
[7]   CHARACTERIZATION OF THE TRANSITION FROM DEFECT TO PHASE TURBULENCE [J].
EGOLF, DA ;
GREENSIDE, HS .
PHYSICAL REVIEW LETTERS, 1995, 74 (10) :1751-1754
[8]   THE ECKHAUS INSTABILITY FOR TRAVELING WAVES [J].
JANIAUD, B ;
PUMIR, A ;
BENSIMON, D ;
CROQUETTE, V ;
RICHTER, H ;
KRAMER, L .
PHYSICA D, 1992, 55 (3-4) :269-286
[9]   SYMMETRY-BREAKING BIFURCATIONS IN ONE-DIMENSIONAL EXCITABLE MEDIA [J].
KNESS, M ;
TUCKERMAN, LS ;
BARKLEY, D .
PHYSICAL REVIEW A, 1992, 46 (08) :5054-5062
[10]   Wound-up phase turbulence in the complex Ginzburg-Landau equation [J].
Montagne, R ;
HernandezGarcia, E ;
Amengual, A ;
SanMiguel, M .
PHYSICAL REVIEW E, 1997, 56 (01) :151-167