Receptor tyrosine kinase MET ligand-interaction classified via machine learning from single-particle tracking data

被引:0
|
作者
Malkusch, Sebastian [1 ]
Rahm, Johanna, V [2 ]
Dietz, Marina S. [2 ]
Heilemann, Mike [2 ]
Sibarita, Jean-Baptiste [3 ]
Lotsch, Jorn [1 ,4 ]
机构
[1] Goethe Univ Frankfurt, Inst Clin Pharmacol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Max von Laue Str 7, D-60438 Frankfurt, Germany
[3] Univ Bordeaux, Interdisciplinary Inst Neurosci, IINS, CNRS,UMR 5297, F-33000 Bordeaux, France
[4] Fraunhofer Inst Translat Med & Pharmacol ITMP, Theodor Stern Kai 7, D-60596 Frankfurt, Germany
关键词
HIDDEN MARKOV-MODELS; STOCHASTIC SIMULATION; APPROPRIATE USE; MOLECULE; DIMERIZATION; ACTIVATION; LISTERIA; MICROSCOPY; DYNAMICS; SYSTEM;
D O I
10.1091/mbc.E21-10-0496
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Internalin B-mediated activation of the membrane-bound receptor tyrosine kinase MET is accompanied by a change in receptor mobility. Conversely, it should be possible to infer from receptor mobility whether a cell has been treated with internalin B. Here, we propose a method based on hidden Markov modeling and explainable artificial intelligence that machine-learns the key differences in MET mobility between internalin B-treated and -untreated cells from single-particle tracking data. Our method assigns receptor mobility to three diffusion modes (immobile, slow, and fast). It discriminates between internalin B-treated and -untreated cells with a balanced accuracy of >99% and identifies three parameters that are most affected by internalin B treatment: a decrease in the mobility of slow molecules (1) and a depopulation of the fast mode (2) caused by an increased transition of fast molecules to the slow mode (3). Our approach is based entirely on free software and is readily applicable to the analysis of other membrane receptors.
引用
收藏
页数:14
相关论文
共 29 条
  • [1] Activation and Cross-Interaction of Receptor Tyrosine Kinases Studied by Single-Particle Tracking
    Harwardt, Marie-Lena I. E.
    Strauss, Sebastian
    Jungmann, Ralf
    Dietz, Marina S.
    Heilemann, Mike
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 175A - 175A
  • [2] Diffusion State Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in Live Cells
    Rahm, Johanna V.
    Malkusch, Sebastian
    Endesfelder, Ulrike
    Dietz, Marina S.
    Heilemann, Mike
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [3] Studying the Interaction of Receptor Tyrosine Kinases and Adaptor Proteins at the Single-Molecule Level with Single-Particle Tracking
    Baldering, Tim Niklas
    Rahm, Johanna
    Malkusch, Sebastian
    Dietz, Marina S.
    Heilemann, Mike
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 97A - 97A
  • [4] Trajectory Analysis in Single-Particle Tracking: From Mean Squared Displacement to Machine Learning Approaches
    Spagnolo, Chiara Schirripa
    Luin, Stefano
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [5] Machine learning approaches for automatic classification of single-particle mass spectrometry data
    Wang, Guanzhong
    Ruser, Heinrich
    Schade, Julian
    Passig, Johannes
    Adam, Thomas
    Dollinger, Gunther
    Zimmermann, Ralf
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (01) : 299 - 313
  • [6] Machine learning assembly landscapes from particle tracking data
    Long, Andrew W.
    Zhang, Jie
    Granick, Steve
    Ferguson, Andrew L.
    SOFT MATTER, 2015, 11 (41) : 8141 - 8153
  • [7] Computing single-particle flotation kinetics using automated mineralogy data and machine learning
    Pereira, Lucas
    Frenzel, Max
    Hoang, Duong Huu
    Tolosana-Delgado, Raimon
    Rudolph, Martin
    Gutzmer, Jens
    MINERALS ENGINEERING, 2021, 170
  • [8] Single-particle tracking and machine-learning classification reveals heterogeneous Piezo1 diffusion
    Ly, Alan T.
    Tyagi, Vivek
    Bertaccini, Gabriella A.
    Evans, Elizabeth
    Freites, J. Alfredo
    Tobias, Douglas J.
    Pathak, Medha M.
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 90A - 90A
  • [9] DENSE MAPPING OF INTRACELLULAR DIFFUSION AND DRIFT FROM SINGLE-PARTICLE TRACKING DATA ANALYSIS
    Salomon, Antoine
    Valades-Cruz, Cesar Augusto
    Leconte, Ludovic
    Kervrann, Charles
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 966 - 970
  • [10] Membrane dynamics of resting and internalin B-bound MET receptor tyrosine kinase studied by single-molecule tracking
    Harwardt, Marie-Lena I. E.
    Young, Phoebe
    Bleymueller, Willem M.
    Meyer, Timo
    Karathanasis, Christos
    Niemann, Hartmut H.
    Heilemann, Mike
    Dietz, Marina S.
    FEBS OPEN BIO, 2017, 7 (09): : 1422 - 1440