On Out-of-Distribution Detection Algorithms with Deep Neural Skin Cancer Classifiers

被引:28
作者
Pacheco, Andre G. C. [1 ]
Sastry, Chandramouli S. [2 ,3 ]
Trappenberg, Thomas [2 ]
Oore, Sageev [2 ,3 ]
Krohling, Renato A. [1 ]
机构
[1] Univ Fed Espirito Santo, Vitoria, ES, Brazil
[2] Dalhousie Univ, Halifax, NS, Canada
[3] Vector Inst, Toronto, ON, Canada
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
基金
加拿大自然科学与工程研究理事会;
关键词
CLASSIFICATION; DERMOSCOPY; DIAGNOSIS; ACCURACY;
D O I
10.1109/CVPRW50498.2020.00374
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer-aided skin cancer detection systems built with deep neural networks yield overconfident predictions on out-of-distribution examples. Motivated by the importance of out-of-distribution detection in these systems and the lack of relevant benchmarks targeted for skin cancer classification, we introduce a rich collection of out-of-distribution datasets - designed to comprehensively evaluate state-of-the-art out-of-distribution algorithms with skin cancer classifiers. In addition, we propose an adaptation in the Gram-Matrix algorithm for out-of-distribution detection that generally performs better and faster than the original algorithm for the considered skin cancer classification task. We also include a detailed discussion comparing the various state-of-the-art out-of-distribution detection algorithms and identify avenues for future research.
引用
收藏
页码:3152 / 3161
页数:10
相关论文
共 43 条
[1]  
[Anonymous], 2018, INT C LEARNING REPRE
[2]   Dermoscopy of pigmented skin lesions - a valuable tool for early diagnosis of melanoma [J].
Argenziano, Giuseppe ;
Soyer, H. Peter .
LANCET ONCOLOGY, 2001, 2 (07) :443-449
[3]   Improving Dermoscopy Image Classification Using Color Constancy [J].
Barata, Catarina ;
Celebi, M. Emre ;
Marques, Jorge S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) :1146-1152
[4]  
Bissoto Alceu, 2019, P IEEE C COMP VIS PA
[5]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[6]   Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
Utikal, Jochen S. ;
von Kalle, Christof .
EUROPEAN JOURNAL OF CANCER, 2019, 113 :47-54
[7]  
Canadian Cancer Society's Advisory Committee on Can- cer Statistics, 2014, CAN CANC STAT 2014 S
[8]  
Cancer Council Australia, 2018, Understanding skin cancer-a guide for people with cancer, their families and friends
[9]   Dermoscopy Image Analysis: Overview and Future Directions [J].
Celebi, M. Emre ;
Codella, Noel ;
Halpern, Allan .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) :474-478
[10]   Deep learning ensembles for melanoma recognition in dermoscopy images [J].
Codella, N. C. F. ;
Nguyen, Q. -B. ;
Pankanti, S. ;
Gutman, D. A. ;
Helba, B. ;
Halpern, A. C. ;
Smith, J. R. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2017, 61 (4-5)