Bifurcation from interval and positive solutions for second order periodic boundary value problems

被引:24
作者
Xu, Jia [1 ]
Ma, Ruyun [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Multiplicity results; Eigenvalues; Bifurcation methods; Bifurcation from interval; Positive solutions; ORDINARY DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1016/j.amc.2010.03.092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a global description of the branches of positive solutions of second order periodic boundary value problems u(n) - q(t)u + lambda f(t, u) = 0, 0 < t < 2 pi, u(0) = u(2 pi), u'(0) = u'(2 pi) which are not necessarily linearizable. Our approach are based on topological degree and global bifurcation techniques. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2463 / 2471
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1973, Rocky Mountain J. Math., DOI 10.1216/RMJ-1973-3-2-161
[2]   On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions [J].
Atici, FM ;
Guseinov, GS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) :341-356
[3]  
Camassa R., 1994, Advances in Applied Mechanics, V31, P1
[4]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[5]  
2-D
[6]   On the spectral problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) :215-230
[7]  
Constantin A., 1997, Ann. Sc. Norm. Super. Pisa Cl. Sci, V24, P767
[8]   Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Haiyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1185-1197
[9]   NONZERO SOLUTIONS OF BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER ORDINARY AND DELAY-DIFFERENTIAL EQUATIONS [J].
GUSTAFSON, GB ;
SCHMITT, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :129-+
[10]   Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces [J].
Jiang, DQ ;
Chu, JF ;
O'Regan, D ;
Agarwal, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (02) :563-576