Biomimetic N-Doped Graphene Membrane for Proton Exchange Membranes

被引:45
作者
Zeng, Zhiyang [1 ]
Song, Ruiyang [1 ]
Zhang, Shengping [1 ,2 ]
Han, Xiao [1 ,2 ]
Zhu, Zhen [1 ]
Chen, Xiaobo [1 ]
Wang, Luda [1 ,2 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Inst Microelect, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Proton exchange membranes (PEMs); Graphene; Fuel cells; Mass transport; Biomimetic; RAMAN-SPECTROSCOPY; ION SELECTIVITY; TRANSPORT; TECHNOLOGY; MECHANISMS; DEFECTS; CHANNEL;
D O I
10.1021/acs.nanolett.1c00813
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Proton exchange membranes (PEMs) with both high selectivity and high permeance are of great demand in hydrogen-based applications, especially in fuel cells. Although graphene membranes have shown high selectivity of protons over other ions and molecules, the relatively low permeance of protons through perfect pristine graphene restricts its practical applications. Inspired by the nitrogen-assisted proton transport in biological systems, we introduced N-doping to increase the proton permeance and proposed a type of N-doped graphene membranes (NGMs) for proton exchange, which have both high proton permeance and high selectivity. Compared to the state-of-the-art commercial PEMs, the NGMs show significant increases in both areal proton conductivity (2-3 orders of magnitude) and selectivity of proton to methanol (1-2 orders of magnitude). The work realized the controllable tuning of proton permeance of the graphene membrane with N-doping and developed a new type of graphene-based PEMs with high performance for practical applications.
引用
收藏
页码:4314 / 4319
页数:6
相关论文
共 56 条
[1]   Overview of hybrid membranes for direct-methanol fuel-cell applications [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Daud, W. R. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) :2160-2175
[2]   A review on methanol crossover in direct methanol fuel cells: challenges and achievements [J].
Ahmed, Mahmoud ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1213-1228
[3]   Raman characterization of defects and dopants in graphene [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (08)
[4]   Impermeability of graphene and its applications [J].
Berry, Vikas .
CARBON, 2013, 62 :1-10
[5]   Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy [J].
Bertoti, Imre ;
Mohai, Miklos ;
Laszlo, Krisztina .
CARBON, 2015, 84 :185-196
[6]   Nanofluidics coming of age [J].
Bocquet, Lyderic .
NATURE MATERIALS, 2020, 19 (03) :254-256
[7]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[8]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[9]   On the decay of Nafion proton conductivity at high temperature and relative humidity [J].
Casciola, M. ;
Alberti, G. ;
Sganappa, M. ;
Narducci, R. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :141-145
[10]   Nitrogen-Mediated Graphene Oxide Enables Highly Efficient Proton Transfer [J].
Chai, Guo-Liang ;
Shevlin, Stephen A. ;
Guo, Zhengxiao .
SCIENTIFIC REPORTS, 2017, 7