Analytical solution to the conformable fractional Lane-Emden type equations arising in astrophysics

被引:12
作者
Abdel-Salam, Emad A-B [1 ]
Nouh, Mohamed, I [2 ]
Elkholy, Essam A. [2 ,3 ]
机构
[1] New Valley Univ, Fac Sci, Dept Math, El Kharja 72511, Egypt
[2] Natl Res Inst Astron & Geophys NRIAG, Dept Astron, Cairo 11421, Egypt
[3] Northern Border Univ, Coll Sci, Dept Phys, Ar Ar, Saudi Arabia
关键词
Fractional lane-emden equation; conformable derivatives; fractional adomian decomposition; APPROXIMATE SOLUTION;
D O I
10.1016/j.sciaf.2020.e00386
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lane-Emden equations have many applications in physical science and so make great attention to researchers. In most cases there is are no exact solutions to these equations and only approximate solutions could be performed. This paper introduces analytical solutions to Lane-Emden type equations using the fractional Adomian decomposition method. We solve six examples related to astrophysical and physical problems. The approximate solutions are derived in the form of a divergent series. In the case of the fractional parameter equal one, the integer order, we obtained the same results as obtained by the method of Adomian decomposition. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative.
引用
收藏
页数:7
相关论文
共 19 条
[1]   Approximate Solution to the Fractional Second-Type Lane-Emden Equation [J].
Abdel-Salam, E. A-B ;
Nouh, M. I. .
ASTROPHYSICS, 2016, 59 (03) :398-410
[2]   Conformable fractional polytropic gas spheres [J].
Abdel-Salam, Emad. A. -B. ;
Nouh, Mohamed I. .
NEW ASTRONOMY, 2020, 76
[3]   ON THE ANALYTIC SOLUTION OF THE LANE-EMDEN EQUATION [J].
ADOMIAN, G ;
RACH, R ;
SHAWAGFEH, NT .
FOUNDATIONS OF PHYSICS LETTERS, 1995, 8 (02) :161-181
[4]  
Adomian G., 1994, FUNDAM THEOR PHYS
[5]  
[Anonymous], 2004, ASTROPHYS SPACE SC L
[6]  
Chandrasekhar S., 1967, An Introduction to the Study of Stellar Structure
[7]   Solutions of Emden-Fowler equations by homotopy-perturbation method [J].
Chowdhury, M. S. H. ;
Hashim, I. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :104-115
[8]  
Herrmann R., 2014, INTRO PHYS
[9]   Subordination and superordination for univalent solutions for fractional differential equations [J].
Ibrahim, Rabha W. ;
Darus, Maslina .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :871-879
[10]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70