The transmutation operator method for efficient solution of the inverse Sturm-Liouville problem on a half-line

被引:11
作者
Delgado, Briceyda B. [1 ]
Khmelnytskaya, Kira, V [2 ]
Kravchenko, Vladislav V. [1 ,3 ]
机构
[1] Southern Fed Univ, Reg Math Ctr, Bolshaya Sadovaya 105-42, Rostov Na Donu, Russia
[2] Autonomous Univ Queretaro, Fac Engn, Queretaro, Mexico
[3] CINVESTAV, Dept Math, Unidad Queretaro Libramiento, Norponiente 2000, Queretaro 76230, Qro, Mexico
关键词
Gel'fand-Levitan equation; half-line; inverse Sturm-Liouville problem; Jost solution; spectral density function; transmutation operator;
D O I
10.1002/mma.5854
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse Sturm-Liouville problem on a half-line is considered. With the aid of a Fourier-Legendre series representation of the transmutation integral kernel and the Gel'fand-Levitan equation, the numerical solution of the problem is reduced to a system of linear algebraic equations. The potential q is recovered from the first coefficient of the Fourier-Legendre series. The resulting numerical method is direct and simple. The results of the numerical experiments are presented.
引用
收藏
页码:7359 / 7366
页数:8
相关论文
共 12 条
[1]  
Akhiezer N.I., 1993, THEORY LINEAR OPERAT
[2]   Construction of the half-line potential from the Jost function [J].
Aktosun, T .
INVERSE PROBLEMS, 2004, 20 (03) :859-876
[3]  
FREILING G., 2001, Inverse Sturm-Liouville Problems and Their Applications
[4]  
Freiling G, 2007, ADV DYN SYST APPL, V2, P95
[5]  
Kantorovich L. V., 1982, Functional Analysis, V2nd
[6]   On a method for solving the inverse Sturm-Liouville problem [J].
Kravchenko, Vladislav V. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (03) :401-407
[7]   On a method for solving the inverse scattering problem on the line [J].
Kravchenko, Vladislav V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (04) :1321-1327
[8]   Representation of solutions to the one-dimensional Schrodinger equation in terms of Neumann series of Bessel functions [J].
Kravchenko, Vladislav V. ;
Navarro, Luis J. ;
Torba, Sergii M. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :173-192
[9]  
Levitan B. M., 1987, INVERSE STURM LIOUVI
[10]  
Marchenko V. A., 2011, STURM LIOUVILLE OPER