Improved drug-target interaction prediction with intermolecular graph transformer

被引:11
|
作者
Liu, Siyuan [1 ,2 ]
Wang, Yusong [2 ,3 ]
Deng, Yifan [2 ,4 ]
He, Liang [2 ]
Shao, Bin [2 ]
Yin, Jian [5 ]
Zheng, Nanning [3 ]
Liu, Tie-Yan [6 ]
Wang, Tong [2 ]
机构
[1] Sun Yat Sen Univ, Guangzhou, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] Xi An Jiao Tong Univ, Xian, Peoples R China
[4] Fudan Univ, Shanghai, Peoples R China
[5] Sun Yat Sen Univ, Data Sci & Comp Sch, Guangzhou, Peoples R China
[6] Microsoft, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
drug-target Interaction; Intermolecular Graph Transformer; deep learning; drug discovery; DOCKING; SETS;
D O I
10.1093/bib/bbac162
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The identification of active binding drugs for target proteins (referred to as drug-target interaction prediction) is the key challenge in virtual screening, which plays an essential role in drug discovery. Although recent deep learning-based approaches achieve better performance than molecular docking, existing models often neglect topological or spatial of intermolecular information, hindering prediction performance. We recognize this problem and propose a novel approach called the Intermolecular Graph Transformer (IGT) that employs a dedicated attention mechanism to model intermolecular information with a three-way Transformer-based architecture. IGT outperforms state-of-the-art (SoTA) approaches by 9.1% and 20.5% over the second best option for binding activity and binding pose prediction, respectively, and exhibits superior generalization ability to unseen receptor proteins than SoTA approaches. Furthermore, IGT exhibits promising drug screening ability against severe acute respiratory syndrome coronavirus 2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses. Source code and datasets are available at https://github.com/rnicrosoft/IGT-Intermolecular-Graph-Transformer.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Drug-target Interaction Prediction By Combining Transformer and Graph Neural Networks
    Liu, Junkai
    Lu, Yaoyao
    Guan, Shixuan
    Jiang, Tengsheng
    Ding, Yijie
    Fu, Qiming
    Cui, Zhiming
    Wu, Hongjie
    CURRENT BIOINFORMATICS, 2024, 19 (04) : 316 - 326
  • [2] Drug-Target Interaction Prediction Based on Interpretable Graph Transformer Model
    Zhu, Baozhong
    Zhang, Runhua
    Jiang, Tengsheng
    Cui, Zhiming
    Wu, Hongjie
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 676 - 686
  • [3] Drug-Target Interaction Prediction Based on Transformer
    Liu, Junkai
    Jiang, Tengsheng
    Lu, Yaoyao
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 302 - 309
  • [4] GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction
    Gao M.
    Zhang D.
    Chen Y.
    Zhang Y.
    Wang Z.
    Wang X.
    Li S.
    Guo Y.
    Webb G.I.
    Nguyen A.T.N.
    May L.
    Song J.
    Computers in Biology and Medicine, 2024, 173
  • [5] Transformer and Graph Transformer-Based Prediction of Drug-Target Interactions
    Qian, Meiling
    Lu, Weizhong
    Zhang, Yu
    Liu, Junkai
    Wu, Hongjie
    Lu, Yaoyao
    Li, Haiou
    Fu, Qiming
    Shen, Jiyun
    Xiao, Yongbiao
    CURRENT BIOINFORMATICS, 2024, 19 (05) : 470 - 481
  • [6] MolTrans: Molecular Interaction Transformer for drug-target interaction prediction
    Huang, Kexin
    Xiao, Cao
    Glass, Lucas M.
    Sun, Jimeng
    BIOINFORMATICS, 2021, 37 (06) : 830 - 836
  • [7] Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization
    Ezzat, Ali
    Zhao, Peilin
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (03) : 646 - 656
  • [8] Heterogeneous Graph Attention Network for Drug-Target Interaction Prediction
    Li, Mei
    Cai, Xiangrui
    Li, Linyu
    Xu, Sihan
    Ji, Hua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1166 - 1176
  • [9] Drug-target interaction prediction using knowledge graph embedding
    Li, Nan
    Yang, Zhihao
    Wang, Jian
    Lin, Hongfei
    ISCIENCE, 2024, 27 (06)
  • [10] DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug-Target interaction prediction
    Zhang, Peiliang
    Wei, Ziqi
    Che, Chao
    Jin, Bo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142