Nonlinear optomechanical measurement of mechanical motion

被引:111
作者
Brawley, G. A. [1 ]
Vanner, M. R. [1 ,2 ]
Larsen, P. E. [3 ]
Schmid, S. [3 ]
Boisen, A. [3 ]
Bowen, W. P. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, ARC Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[3] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, DK-2800 Lyngby, Denmark
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
CAVITY OPTOMECHANICS; QUANTUM; STATE; LIGHT;
D O I
10.1038/ncomms10988
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
    Anetsberger, G.
    Weig, E. M.
    Kotthaus, J. P.
    Kippenberg, T. J.
    [J]. COMPTES RENDUS PHYSIQUE, 2011, 12 (9-10) : 800 - 816
  • [2] Near-field cavity optomechanics with nanomechanical oscillators
    Anetsberger, G.
    Arcizet, O.
    Unterreithmeier, Q. P.
    Riviere, R.
    Schliesser, A.
    Weig, E. M.
    Kotthaus, J. P.
    Kippenberg, T. J.
    [J]. NATURE PHYSICS, 2009, 5 (12) : 909 - 914
  • [3] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [4] Quantum-optical state engineering up to the two-photon level
    Bimbard, Erwan
    Jain, Nitin
    MacRae, Andrew
    Lvovsky, A. I.
    [J]. NATURE PHOTONICS, 2010, 4 (04) : 243 - 247
  • [5] Effective Field Theory Approach to Gravitationally Induced Decoherence
    Blencowe, M. P.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [6] Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime
    Borkje, K.
    Nunnenkamp, A.
    Teufel, J. D.
    Girvin, S. M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [7] Cavity optomechanics with a Bose-Einstein condensate
    Brennecke, Ferdinand
    Ritter, Stephan
    Donner, Tobias
    Esslinger, Tilman
    [J]. SCIENCE, 2008, 322 (5899) : 235 - 238
  • [8] Reconstruction of non-classical cavity field states with snapshots of their decoherence
    Deleglise, Samuel
    Dotsenko, Igor
    Sayrin, Clement
    Bernu, Julien
    Brune, Michel
    Raimond, Jean-Michel
    Haroche, Serge
    [J]. NATURE, 2008, 455 (7212) : 510 - 514
  • [9] MODELS FOR UNIVERSAL REDUCTION OF MACROSCOPIC QUANTUM FLUCTUATIONS
    DIOSI, L
    [J]. PHYSICAL REVIEW A, 1989, 40 (03): : 1165 - 1174
  • [10] Fiber-cavity-based optomechanical device
    Flowers-Jacobs, N. E.
    Hoch, S. W.
    Sankey, J. C.
    Kashkanova, A.
    Jayich, A. M.
    Deutsch, C.
    Reichel, J.
    Harris, J. G. E.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (22)