Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?

被引:931
作者
Besenhard, JO [1 ]
Yang, J [1 ]
Winter, M [1 ]
机构
[1] Graz Univ Technol, Inst Chem Technol Inorgan Mat, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
lithium-ion batteries; lithium-alloy anode; lithium-tin-alloys; ultrasmall particle size; multiphase alloys;
D O I
10.1016/S0378-7753(96)02547-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high packing density of lithium is a significant advantage of lithium insertion into metallic matrices that can be achieved in lithium alloys compared with lithium intercalation into carbonaceous materials. Moreover, the operating voltage of lithium-alloy anodes may be chosen well-above the potential of metallic lithium and the solvent co-intercalation has not been observed at lithium-alloy electrodes, On the other hand, the volume changes related with insertion/removal of lithium into/from the metallic matrices cause pulverization and rapid failure of lithium-alloy anodes. This paper demonstrates the dramatic effect of the morphology of the metallic host matrix on the performance of the lithium-alloy anodes. Two component host matrices with ultrasmall (submicro- or nanoscale) particle size show an impressive cycling performance. This is related with the small absolute changes of the dimensions of the individual particles and also with the fact that in the first charging step the more reactive particles are allowed to expand in a ductile surrounding of still unreacted material. (C) 1997 Elsevier Science S.A.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 50 条
  • [1] A review of the electrochemical performance of alloy anodes for lithium-ion batteries
    Zhang, Wei-Jun
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 13 - 24
  • [2] Low-Temperature Behavior of Alloy Anodes for Lithium-Ion Batteries
    Cavallaro, Kelsey A.
    Sandoval, Stephanie Elizabeth
    Yoon, Sun Geun
    Thenuwara, Akila C.
    McDowell, Matthew T.
    ADVANCED ENERGY MATERIALS, 2022, 12 (43)
  • [3] Hierarchy Design in Metal Oxides as Anodes for Advanced Lithium-Ion Batteries
    Jin, Jun
    Wu, Liang
    Huang, Shaozhuan
    Yan, Min
    Wang, Hongen
    Chen, Lihua
    Hasan, Tawfique
    Li, Yu
    Su, Bao-Lian
    SMALL METHODS, 2018, 2 (11):
  • [4] Lithium Titanate Aerogel for Advanced Lithium-ion Batteries
    Maloney, Ryan P.
    Kim, Hyun Joong
    Sakamoto, Jeffrey S.
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) : 2318 - 2321
  • [5] Cycling-Induced Microstructural Changes in Alloy Anodes for Lithium-Ion Batteries
    Adams, Jacob N.
    Nelson, George J.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (04)
  • [6] SnSb-TiC-C nanocomposite alloy anodes for lithium-ion batteries
    Leibowitz, Joshua
    Allcorn, Eric
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2015, 279 : 549 - 554
  • [7] Electrochemical Properties of Advanced Anodes for Lithium-ion Batteries Based on Carboxymethylcellulose as binder
    Khomenko, Volodymyr
    Barsukov, Viacheslav
    Senyk, Ilona
    BALTIC POLYMER SYMPOSIUM, 2013, 559 : 49 - 55
  • [8] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [9] SiOC/CNTs composites as anodes for lithium-ion batteries
    Hu, Changhao
    Cen, Zhuoqi
    Quan, Yiling
    Zhang, Qinghua
    Jian, Xigao
    Liang, Kun
    Song, Yujie
    Xu, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [10] Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries
    Stenina, I. A.
    Kulova, T. L.
    Desyatov, A., V
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (08) : 658 - 666