The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes

被引:92
|
作者
Lopez, Jeffrey [1 ]
Chen, Zheng [1 ]
Wang, Chao [1 ]
Andrews, Sean C. [1 ]
Cui, Yi [2 ,3 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94205 USA
基金
美国国家科学基金会;
关键词
lithium-ion battery; silicon; microparticles; high capacity anode; self-healing; polymer binder; viscoelasticity; LITHIUM-ION BATTERIES; NEGATIVE ELECTRODES; RECHARGEABLE BATTERIES; SECONDARY BATTERIES; ENERGY-STORAGE; POLYMER BINDER; PERFORMANCE; DESIGN; NANOPARTICLES; LITHIATION;
D O I
10.1021/acsami.5b11363
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-healing supramolecular binder was previously found to enhance the cycling stability of micron-sized silicon particles used as the active material in lithium-ion battery anodes. In this study, we systematically control the density of cross-linking junctions in a modified supramolecular polymer binder in order to better understand how viscoelastic materials properties affect cycling stability. We found that binders with relaxation times on the order of 0.1 s gave the best cycling stability with 80% capacity maintained for over 175 cycles using large silicon particles (similar to 0.9 um). We attributed this to an improved balance between the viscoelastic stress relaxation in the binder and the stiffness needed to maintain mechanical integrity of the electrode. The more cross-linked binder showed markedly worse performance confirming the need for liquid-like flow in order for our self-healing polymer electrode concept to be effective.
引用
收藏
页码:2318 / 2324
页数:7
相关论文
共 50 条
  • [21] Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies
    Hofmeier, H
    El-ghayoury, A
    Schubert, US
    E-POLYMERS, 2003,
  • [22] Preparation of an Amorphous Cross-Linked Binder for Silicon Anodes
    Guo, Rongnan
    Zhang, Shunlong
    Ying, Hangjun
    Yang, Wentao
    Wang, Jianli
    Han, Weiqiang
    CHEMSUSCHEM, 2019, 12 (21) : 4838 - 4845
  • [23] Multiresponsive Polymer Hydrogels by Orthogonal Supramolecular Chain Cross-Linking
    Hackelbusch, Sebastian
    Rossow, Torsten
    Becker, Hendrik
    Seiffert, Sebastian
    MACROMOLECULES, 2014, 47 (12) : 4028 - 4036
  • [24] Cross-linking effects in the cornea of rabbits
    Spörl, E
    Schreiber, J
    Hellmund, K
    Seiler, T
    Knuschke, P
    OPHTHALMOLOGE, 2000, 97 (03): : 203 - 206
  • [25] EFFECTS OF COPPER ON COLLAGEN CROSS-LINKING
    RUCKER, RB
    PARKER, HE
    ROGLER, JC
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1969, 34 (01) : 28 - &
  • [26] EFFECTS OF CROSS-LINKING ON ELASTOMER ADHESION
    SHANAHAN, MER
    SCHRECK, P
    SCHULTZ, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1988, 306 (19): : 1325 - 1330
  • [27] Cross-linking of hydropolysilanes for use as silicon carbide precursors
    Department of Chemical Engineering, Natl. Yunlin Institute of Technology, Touliu, Yunlin, Taiwan
    不详
    Eur Polym J, 5 (625-630):
  • [28] Cross-linking of hydropolysilanes for use as silicon carbide precursors
    Shieh, YT
    Sawan, SP
    EUROPEAN POLYMER JOURNAL, 1996, 32 (05) : 625 - 630
  • [29] Impact of Keratoconus, Cross-Linking and Cross-Linking Combined With Photorefractive Keratectomy on Self-Reported Quality of Life
    Labiris, Georgios
    Giarmoukakis, Athanassios
    Sideroudi, Haris
    Gkika, Maria
    Fanariotis, Michael
    Kozobolis, Vassilios
    CORNEA, 2012, 31 (07) : 734 - 739
  • [30] Probing the Interplay of Ultraviolet Cross-Linking and Noncovalent Interactions in Supramolecular Elastomers
    Monemian, Seyedali
    Jang, Keon-Soo
    Ghassemi, Hossein
    Korley, LaShanda T. J.
    MACROMOLECULES, 2014, 47 (16) : 5633 - 5642