Imaginary quadratic fields of class number 2 and Levy-Hendy quadratics

被引:1
作者
Nguyen, Viet Kh. [1 ]
机构
[1] Fpt Univ, 8 Ton That Thuyet, Hanoi, Vietnam
关键词
Imaginary quadratic fields; Class number; Euler; Levy; Hendy; Prime quadratics;
D O I
10.1016/j.jnt.2017.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d = pq equivalent to 3 (mod 4) with prime p, q and q < p. We prove a precise bound in Hendy's theorem on imaginary quadratic fields Q(root-d) with class number h(-d) = 2 which is a full analogue of Frobenius-Rabinowitsch theorem (the case of class number one). Namely it is shown that h( d) = 2 if and only if the Levy-Hendy quadratic L-d(x) = qx(2) qx+ l(0) with l(0) = p + q/4 takes only prime values for integers x in the interval 0 <= x <= l(0) - 2. We discuss also two related conjectures in connection with generalizing a result of Chowla et al. ([1]) on the class number and the least prime quadratic residue. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 46
页数:7
相关论文
共 6 条
[1]   THE LEAST PRIME QUADRATIC RESIDUE AND THE CLASS NUMBER [J].
CHOWLA, S ;
COWLES, J ;
COWLES, M .
JOURNAL OF NUMBER THEORY, 1986, 22 (01) :1-3
[2]  
Cox D., 1989, Primes of the Form x2 + ny2: Fermat, Class Field Theory and Complex Multiplication
[3]  
HENDY MD, 1974, P AM MATH SOC, V43, P253
[4]  
Mollin RA, 1996, ACTA ARITH, V74, P17
[5]  
Nagell T., 1922, ABH MATH SEM HAMBURG, V1, P140, DOI DOI 10.1007/BF02940586
[6]  
Shimizu K., 2012, RIMS KOKYUROKU BESSA, P255