Topological Phases of Parafermions: A Model with Exactly Solvable Ground States

被引:27
作者
Iemini, Fernando [1 ,2 ,3 ]
Mora, Christophe [4 ]
Mazza, Leonardo [5 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] Ist Nanosci CNR, I-56126 Pisa, Italy
[4] Univ Paris Diderot, Univ Pierre & Marie Curie, Sorbonne Univ,Sorbonne Paris Cite,CNRS, Lab Pierre Aigrain,Ecole Normale Super,PSL Res U, 24 Rue Lhomond, F-75231 Paris 05, France
[5] PSL Res Univ, CNRS, Ecole Normale Super, Dept Phys, 24 Rue Lhomond, F-75005 Paris, France
关键词
QUANTUM; ANYONS; CHAIN; ORDER;
D O I
10.1103/PhysRevLett.118.170402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parafermions are emergent excitations that generalize Majorana fermions and can also realize topological order. In this Letter, we present a nontrivial and quasi-exactly-solvable model for a chain of parafermions in a topological phase. We compute and characterize the ground-state wave functions, which are matrix-product states and have a particularly elegant interpretation in terms of Fock parafermions, reflecting the factorized nature of the ground states. Using these wave functions, we demonstrate analytically several signatures of topological order. Our study provides a starting point for the nonapproximate study of topological one-dimensional parafermionic chains with spatial inversion and time-reversal symmetry in the absence of strong edge modes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Characterization of topological phases in the compass ladder model
    Haghshenas, R.
    Langari, A.
    Rezakhani, A. T.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (17)
  • [42] Localized Majorana-Like Modes in a Number-Conserving Setting: An Exactly Solvable Model
    Iemini, Fernando
    Mazza, Leonardo
    Rossini, Davide
    Fazio, Rosario
    Diehl, Sebastian
    PHYSICAL REVIEW LETTERS, 2015, 115 (15)
  • [43] Pristine Mott insulator from an exactly solvable spin-1/2 Kitaev model
    Miao, Jian-Jian
    Jin, Hui-Ke
    Wang, Fa
    Zhang, Fu-Chun
    Zhou, Yi
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [44] Bose metal in an exactly solvable model with infinite-range Hatsugai-Kohmoto interaction
    Yang, Wei-Wei
    Luo, Hong-Gang
    Zhong, Yin
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [45] Markovian and non-Markovian master equations versus an exactly solvable model of a qubit in a cavity
    Xia, Zihan
    Garcia-Nila, Juan
    Lidar, Daniel A.
    PHYSICAL REVIEW APPLIED, 2024, 22 (01):
  • [46] Network model for higher-order topological phases
    Liu, Hui
    Franca, Selma
    Moghaddam, Ali G.
    Hassler, Fabian
    Fulga, Ion Cosma
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [47] Quadrupolar spin liquid, octupolar Kondo coupling, and odd-frequency superconductivity in an exactly solvable model
    de Farias, Carlene S.
    de Carvalho, Vanuildo S.
    Miranda, Eduardo
    Pereira, Rodrigo G.
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [48] Quantum phase transitions in an exactly solvable quantum-spin biaxial model with multiple spin interactions
    Zvyagin, A. A.
    PHYSICAL REVIEW B, 2009, 80 (01):
  • [49] Topological Anderson insulating phases in the interacting Haldane model
    Silva, Joao S.
    Castro, Eduardo V.
    Mondaini, Rubem
    Vozmediano, Maria A. H.
    Lopez-Sancho, M. Pilar
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [50] Rotational symmetry protected edge and corner states in Abelian topological phases
    Manjunath, Naren
    Prem, Abhinav
    Lu, Yuan -Ming
    PHYSICAL REVIEW B, 2023, 107 (19)