Improved bounds on Gauss sums in arbitrary finite fields

被引:2
作者
Mohammadi, Ali [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Exponential sums; Gauss sums; sum-product; finite fields; POWERS;
D O I
10.1142/S1793042119501100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be a power of a prime and let Fq be the finite field consisting of q elements. We establish new explicit estimates on Gauss sums of the form S-n(a) = Sigma F-x is an element of(q) psi(a)(x(n)), where psi(a) is a nontrivial additive character. In particular, we show that one has a nontrivial upper bound on vertical bar S-n(a)vertical bar for certain values of n of order up to q(1/2+1/68). Our results improve on the previous best-known bound due to Zhelezov.
引用
收藏
页码:2027 / 2041
页数:15
相关论文
共 50 条
  • [41] An algebraic interpretation of the Gauss sums
    Danas, G
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 76 (04) : 447 - 454
  • [42] Converse theorem of Gauss sums
    Nien, Chufeng
    Zhang, Lei
    JOURNAL OF NUMBER THEORY, 2021, 221 : 365 - 388
  • [43] NMR implementations of Gauss sums
    Jones, Jonathan A.
    PHYSICS LETTERS A, 2008, 372 (36) : 5758 - 5759
  • [44] Equidistribution and independence of Gauss sums
    Rojas-Leon, Antonio
    ADVANCES IN MATHEMATICS, 2024, 450
  • [45] Local units and Gauss sums
    Aoki, M
    JOURNAL OF NUMBER THEORY, 2003, 101 (02) : 270 - 293
  • [46] Gauss sums and multinomial coefficients
    Young, PT
    JOURNAL OF NUMBER THEORY, 2004, 106 (01) : 13 - 25
  • [47] TWISTED MONOMIAL GAUSS SUMS MODULO PRIME POWERS
    Pigno, Vincent
    Pinner, Christopher
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 285 - 301
  • [48] T-adic exponential sums over finite fields
    Liu, Chunlei
    Wan, Daqing
    ALGEBRA & NUMBER THEORY, 2009, 3 (05) : 489 - 509
  • [49] On the Bounds of the Bilinear Complexity of Multiplication in Some Finite Fields
    Stéphane Ballet
    Jean Chaumine
    Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 205 - 221
  • [50] On the bounds of the bilinear complexity of multiplication in some finite fields
    Ballet, S
    Chaumine, J
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (3-4) : 205 - 211