Improved bounds on Gauss sums in arbitrary finite fields

被引:2
作者
Mohammadi, Ali [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Exponential sums; Gauss sums; sum-product; finite fields; POWERS;
D O I
10.1142/S1793042119501100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be a power of a prime and let Fq be the finite field consisting of q elements. We establish new explicit estimates on Gauss sums of the form S-n(a) = Sigma F-x is an element of(q) psi(a)(x(n)), where psi(a) is a nontrivial additive character. In particular, we show that one has a nontrivial upper bound on vertical bar S-n(a)vertical bar for certain values of n of order up to q(1/2+1/68). Our results improve on the previous best-known bound due to Zhelezov.
引用
收藏
页码:2027 / 2041
页数:15
相关论文
共 50 条