Improved bounds on Gauss sums in arbitrary finite fields

被引:2
作者
Mohammadi, Ali [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Exponential sums; Gauss sums; sum-product; finite fields; POWERS;
D O I
10.1142/S1793042119501100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be a power of a prime and let Fq be the finite field consisting of q elements. We establish new explicit estimates on Gauss sums of the form S-n(a) = Sigma F-x is an element of(q) psi(a)(x(n)), where psi(a) is a nontrivial additive character. In particular, we show that one has a nontrivial upper bound on vertical bar S-n(a)vertical bar for certain values of n of order up to q(1/2+1/68). Our results improve on the previous best-known bound due to Zhelezov.
引用
收藏
页码:2027 / 2041
页数:15
相关论文
共 50 条
  • [21] ON SUMS OF KLOOSTERMAN AND GAUSS SUMS
    Shparlinski, Igor E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (12) : 8679 - 8697
  • [22] On algebraic degrees of certain exponential sums over finite fields
    Lin, Xin
    FORUM MATHEMATICUM, 2025,
  • [23] On inverted Kloosterman sums over finite fields
    Xin Lin
    Daqing Wan
    Mathematische Zeitschrift, 2024, 306
  • [24] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03) : 863 - 898
  • [25] On inverted Kloosterman sums over finite fields
    Lin, Xin
    Wan, Daqing
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [26] Multiple Dedekind–Rademacher sums in finite fields
    Abdelmejid Bayad
    Yoshinori Hamahata
    The Ramanujan Journal, 2014, 35 : 493 - 502
  • [27] A NOTE ON POWER SUMS OVER FINITE FIELDS
    Diaz-Vargas, Javier
    Hernandez-Mezquita, Eduardo
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 32 (02): : 141 - 164
  • [28] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [29] ON THE SUMS OF ANY k POINTS IN FINITE FIELDS
    Covert, David
    Koh, Doowon
    Pi, Youngjin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (01) : 367 - 382
  • [30] SUMS OF INVERSES IN THIN SETS OF FINITE FIELDS
    Shparlinski, Igor E.
    Zumalacarregui, Ana
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1377 - 1388