Discrete mobile Centers

被引:32
作者
Gao, J [1 ]
Guibas, LJ
Hershberger, J
Zhang, L
Zhu, A
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Mentor Graph Corp, Wilsonville, OR 97070 USA
[3] Compaq Syst Res Ctr, Palo Alto, CA 94301 USA
关键词
D O I
10.1007/s00454-003-2925-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new randomized algorithm for maintaining a set of clusters among moving nodes in the plane. Given a specified cluster radius, our algorithm selects and maintains a variable subset of the nodes as cluster centers. This subset has the property that (1) balls of the given radius centered at the chosen nodes cover all the others and (2) the number of centers selected is a constant-factor approximation of the minimum possible. As the nodes move, an event-based kinetic data structure updates the clustering as necessary. This kinetic data structure is shown to be responsive, efficient, local, and compact. The produced cover is also smooth, in the sense that wholesale cluster re-arrangements are avoided. This clustering algorithm is distributed in nature and can enable numerous applications in ad hoc wireless networks, where mobile devices must be interconnected to perform various tasks collaboratively.
引用
收藏
页码:45 / 63
页数:19
相关论文
共 26 条
[1]  
Agarwal P. K., 1999, Proceedings of the Fifteenth Annual Symposium on Computational Geometry, P247, DOI 10.1145/304893.304961
[2]  
[Anonymous], ACM BALTZER WIRELESS
[3]  
[Anonymous], 2002, AD HOC MOBILE WIRELE
[4]   Distributed clustering for ad hoc networks [J].
Basagni, S .
FOURTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS, AND NETWORKS (I-SPAN'99), PROCEEDINGS, 1999, :310-315
[5]   Data structures for mobile data [J].
Basch, J ;
Guibas, LJ ;
Hershberger, J .
JOURNAL OF ALGORITHMS, 1999, 31 (01) :1-28
[6]  
Basch J., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P344, DOI 10.1145/262839.262998
[7]  
CHIANG C, 1907, P IEEE SICON 97 APR, P197
[8]   A DESIGN CONCEPT FOR RELIABLE MOBILE RADIO NETWORKS WITH FREQUENCY HOPPING SIGNALING [J].
EPHREMIDES, A ;
WIESELTHIER, JE ;
BAKER, DJ .
PROCEEDINGS OF THE IEEE, 1987, 75 (01) :56-73
[9]  
FEIGE U, 1996, P ACM S THEOR COMP, P634
[10]   OPTIMAL PACKING AND COVERING IN THE PLANE ARE NP-COMPLETE [J].
FOWLER, RJ ;
PATERSON, MS ;
TANIMOTO, SL .
INFORMATION PROCESSING LETTERS, 1981, 12 (03) :133-137