TIGAR2: sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads

被引:28
作者
Nariai, Naoki [1 ]
Kojima, Kaname [1 ]
Mimori, Takahiro [1 ]
Sato, Yukuto [1 ]
Kawai, Yosuke [1 ]
Yamaguchi-Kabata, Yumi [1 ]
Nagasaki, Masao [1 ]
机构
[1] Tohoku Univ, Tohoku Med Megabank Org, Dept Integrat Genom, Aoba Ku, Sendai, Miyagi 9808573, Japan
关键词
REFERENCE GENOME; ALIGNMENT; GENE; QUANTIFICATION; REVEALS;
D O I
10.1186/1471-2164-15-S10-S5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: High-throughput RNA sequencing (RNA-Seq) enables quantification and identification of transcripts at single-base resolution. Recently, longer sequence reads become available thanks to the development of new types of sequencing technologies as well as improvements in chemical reagents for the Next Generation Sequencers. Although several computational methods have been proposed for quantifying gene expression levels from RNA-Seq data, they are not sufficiently optimized for longer reads (e.g. > 250 bp). Results: We propose TIGAR2, a statistical method for quantifying transcript isoforms from fixed and variable length RNA-Seq data. Our method models substitution, deletion, and insertion errors of sequencers based on gapped-alignments of reads to the reference cDNA sequences so that sensitive read-aligners such as Bowtie2 and BWA-MEM are effectively incorporated in our pipeline. Also, a heuristic algorithm is implemented in variational Bayesian inference for faster computation. We apply TIGAR2 to both simulation data and real data of human samples and evaluate performance of transcript quantification with TIGAR2 in comparison to existing methods. Conclusions: TIGAR2 is a sensitive and accurate tool for quantifying transcript isoform abundances from RNA-Seq data. Our method performs better than existing methods for the fixed-length reads (100 bp, 250 bp, 500 bp, and 1000 bp of both single-end and paired-end) and variable-length reads, especially for reads longer than 250 bp.
引用
收藏
页数:9
相关论文
共 21 条
[1]   Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data [J].
Bragg, Lauren M. ;
Stone, Glenn ;
Butler, Margaret K. ;
Hugenholtz, Philip ;
Tyson, Gene W. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (04)
[2]   Identifying differentially expressed transcripts from RNA-seq data with biological variation [J].
Glaus, Peter ;
Honkela, Antti ;
Rattray, Magnus .
BIOINFORMATICS, 2012, 28 (13) :1721-1728
[3]   Full-length transcriptome assembly from RNA-Seq data without a reference genome [J].
Grabherr, Manfred G. ;
Haas, Brian J. ;
Yassour, Moran ;
Levin, Joshua Z. ;
Thompson, Dawn A. ;
Amit, Ido ;
Adiconis, Xian ;
Fan, Lin ;
Raychowdhury, Raktima ;
Zeng, Qiandong ;
Chen, Zehua ;
Mauceli, Evan ;
Hacohen, Nir ;
Gnirke, Andreas ;
Rhind, Nicholas ;
di Palma, Federica ;
Birren, Bruce W. ;
Nusbaum, Chad ;
Lindblad-Toh, Kerstin ;
Friedman, Nir ;
Regev, Aviv .
NATURE BIOTECHNOLOGY, 2011, 29 (07) :644-U130
[4]   Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs [J].
Guttman, Mitchell ;
Garber, Manuel ;
Levin, Joshua Z. ;
Donaghey, Julie ;
Robinson, James ;
Adiconis, Xian ;
Fan, Lin ;
Koziol, Magdalena J. ;
Gnirke, Andreas ;
Nusbaum, Chad ;
Rinn, John L. ;
Lander, Eric S. ;
Regev, Aviv .
NATURE BIOTECHNOLOGY, 2010, 28 (05) :503-U166
[5]  
Hensman J, 2013, ARXIV E PRINTS, V1308, P5953
[6]   Sensitive gene fusion detection using ambiguously mapping RNA-Seq read pairs [J].
Kinsella, Marcus ;
Harismendy, Olivier ;
Nakano, Masakazu ;
Frazer, Kelly A. ;
Bafna, Vineet .
BIOINFORMATICS, 2011, 27 (08) :1068-1075
[7]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
[8]   RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome [J].
Li, Bo ;
Dewey, Colin N. .
BMC BIOINFORMATICS, 2011, 12
[9]   RNA-Seq gene expression estimation with read mapping uncertainty [J].
Li, Bo ;
Ruotti, Victor ;
Stewart, Ron M. ;
Thomson, James A. ;
Dewey, Colin N. .
BIOINFORMATICS, 2010, 26 (04) :493-500
[10]   Fast and accurate short read alignment with Burrows-Wheeler transform [J].
Li, Heng ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (14) :1754-1760