TimeAutoAD: Autonomous Anomaly Detection With Self-Supervised Contrastive Loss for Multivariate Time Series

被引:23
|
作者
Jiao, Yang [1 ]
Yang, Kai [1 ]
Song, Dongjing [2 ]
Tao, Dacheng [3 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Shanghai 200092, Peoples R China
[2] Univ Connecticut, Dept Comp Sci, Storrs, CT 06269 USA
[3] JD Explore Acad JD Com, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Time series analysis; Pipelines; Optimization; Machine learning; Feature extraction; Training data; Multivariate time series; anomaly detection; Automatic Machine Learning (AutoML); self-supervised learning; contrastive loss; SUPPORT; SEARCH;
D O I
10.1109/TNSE.2022.3148276
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multivariate time series (MTS) data are becoming increasingly ubiquitous in networked systems, e.g., IoT systems and 5G networks. Anomaly detection in MTS refers to identifying time series which exhibit different behaviors from normal status. Building such a system, however, is challenging due to a few reasons: i) labels for anomaly cases are usually unavailable or very rare; ii) most existing approaches rely on manual model-design and hyperparameter tuning, which may cost a huge amount of labor effort. To this end, we propose an autonomous anomaly detection technique for multivariate time series data (TimeAutoAD) based on a novel self-supervised contrastive loss. Specifically, we first present an automatic anomaly detection pipeline to optimize the model configuration and hyperparameters automatically. Next, we introduce three different strategies to augment the training data for generating pseudo negative time series and employ a self-supervised contrastive loss to distinguish the original time series and the generated time series. In this way, the representation learning capability of TimeAutoAD can be greatly enhanced and the anomaly detection performance can thus be improved. Extensive empirical studies on real-world datasets demonstrate that the proposed TimeAutoAD not only outperforms state-of-the-art anomaly detection approaches but also exhibits robustness when training data are contaminated.
引用
收藏
页码:1604 / 1619
页数:16
相关论文
共 50 条
  • [41] Self-Supervised Autoencoders for Visual Anomaly Detection
    Bauer, Alexander
    Nakajima, Shinichi
    Mueller, Klaus-Robert
    MATHEMATICS, 2024, 12 (24)
  • [42] Anomaly Detection on Electroencephalography with Self-supervised Learning
    Xu, Junjie
    Zheng, Yaojia
    Mao, Yifan
    Wang, Ruixuan
    Zheng, Wei-Shi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 363 - 368
  • [43] Self-Supervised Contrastive Learning for Volcanic Unrest Detection
    Bountos, Nikolaos Ioannis
    Papoutsis, Ioannis
    Michail, Dimitrios
    Anantrasirichai, Nantheera
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [44] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [45] A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series
    Zhang, Wei
    He, Ping
    Li, Ting
    Yang, Fan
    Liu, Ying
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 1893 - 1910
  • [46] Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency
    Zhang, Xiang
    Zhao, Ziyuan
    Tsiligkaridis, Theodoros
    Zitnik, Marinka
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [47] MulGad: Multi-granularity contrastive learning for multivariate time series anomaly detection
    Xiao, Bo-Wen
    Xing, Hong-Jie
    Li, Chun-Guo
    INFORMATION FUSION, 2025, 119
  • [48] Multiview Graph Contrastive Learning for Multivariate Time-Series Anomaly Detection in IoT
    Qin, Shuxin
    Chen, Lin
    Luo, Yongcan
    Tao, Gaofeng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 22401 - 22414
  • [49] MPFormer: Multipatch Transformer for Multivariate Time-Series Anomaly Detection With Contrastive Learning
    Ma, Shenhui
    Nie, Jiahao
    Guan, Siwei
    He, Zhiwei
    Gao, Mingyu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (23): : 38221 - 38237
  • [50] Water leak detection using self-supervised time series classification
    Blazquez-Garcia, Ane
    Conde, Angel
    Mori, Usue
    Lozano, Jose A.
    INFORMATION SCIENCES, 2021, 574 : 528 - 541