TimeAutoAD: Autonomous Anomaly Detection With Self-Supervised Contrastive Loss for Multivariate Time Series

被引:23
|
作者
Jiao, Yang [1 ]
Yang, Kai [1 ]
Song, Dongjing [2 ]
Tao, Dacheng [3 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Shanghai 200092, Peoples R China
[2] Univ Connecticut, Dept Comp Sci, Storrs, CT 06269 USA
[3] JD Explore Acad JD Com, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Time series analysis; Pipelines; Optimization; Machine learning; Feature extraction; Training data; Multivariate time series; anomaly detection; Automatic Machine Learning (AutoML); self-supervised learning; contrastive loss; SUPPORT; SEARCH;
D O I
10.1109/TNSE.2022.3148276
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multivariate time series (MTS) data are becoming increasingly ubiquitous in networked systems, e.g., IoT systems and 5G networks. Anomaly detection in MTS refers to identifying time series which exhibit different behaviors from normal status. Building such a system, however, is challenging due to a few reasons: i) labels for anomaly cases are usually unavailable or very rare; ii) most existing approaches rely on manual model-design and hyperparameter tuning, which may cost a huge amount of labor effort. To this end, we propose an autonomous anomaly detection technique for multivariate time series data (TimeAutoAD) based on a novel self-supervised contrastive loss. Specifically, we first present an automatic anomaly detection pipeline to optimize the model configuration and hyperparameters automatically. Next, we introduce three different strategies to augment the training data for generating pseudo negative time series and employ a self-supervised contrastive loss to distinguish the original time series and the generated time series. In this way, the representation learning capability of TimeAutoAD can be greatly enhanced and the anomaly detection performance can thus be improved. Extensive empirical studies on real-world datasets demonstrate that the proposed TimeAutoAD not only outperforms state-of-the-art anomaly detection approaches but also exhibits robustness when training data are contaminated.
引用
收藏
页码:1604 / 1619
页数:16
相关论文
共 50 条
  • [31] Hyperspectral anomaly detection with self-supervised anomaly prior
    Liu, Yidan
    Jiang, Kai
    Xie, Weiying
    Zhang, Jiaqing
    Li, Yunsong
    Fang, Leyuan
    NEURAL NETWORKS, 2025, 187
  • [32] Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification
    Eldele, Emadeldeen
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Kwoh, Chee-Keong
    Li, Xiaoli
    Guan, Cuntai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15604 - 15618
  • [33] Mixing up contrastive learning: Self-supervised representation learning for time series
    Wickstrom, Kristoffer
    Kampffmeyer, Michael
    Mikalsen, Karl Oyvind
    Jenssen, Robert
    PATTERN RECOGNITION LETTERS, 2022, 155 : 54 - 61
  • [34] TimesURL: Self-Supervised Contrastive Learning for Universal Time Series Representation Learning
    Liu, Jiexi
    Chen, Songcan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13918 - 13926
  • [35] Online Multivariate Time Series Anomaly Detection Method Based on Contrastive Learning
    Dong, Xiyao
    Liu, Hui
    Du, Junzhao
    Wang, Zhengkai
    Wang, Cheng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 468 - 479
  • [36] Self-Supervised Anomaly Detection With Neural Transformations
    Qiu, Chen
    Kloft, Marius
    Mandt, Stephan
    Rudolph, Maja
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) : 2170 - 2185
  • [37] Self-supervised anomaly detection for new physics
    Dillon, Barry M.
    Mastandrea, Radha
    Nachman, Benjamin
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [38] SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI
    Zhang, Yunfan Gerry
    Won, Ki Hyun
    Son, Seung Woo
    Siemion, Andrew
    Croft, Steve
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1114 - 1118
  • [39] Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global
    Wang, Xiaofeng
    Lai, Shuaiming
    Zhu, Shuailei
    Chen, Yuntao
    Lv, Laishui
    Qi, Yuanyuan
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [40] A self-supervised anomaly detection algorithm with interpretability
    Wu, Zhichao
    Yang, Xin
    Wei, Xiaopeng
    Yuan, Peijun
    Zhang, Yuanping
    Bai, Jianming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237