EIGENVALUE ESTIMATES ON A CONNECTED FINITE GRAPH

被引:7
作者
Wang, Lin Feng [1 ]
Zhou, Yu Jie [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Jiangsu, Peoples R China
关键词
Connected finite graph; CDE(m; K); condition; CD(m; gradient estimate; eigenvalue; INEQUALITY; CURVATURE;
D O I
10.1090/proc/13890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on gradient estimates of the eigenfunction, we prove lower bound estimates for the first nonzero eigenvalue of the mu-Laplacian on a connected finite graph through the curvature-dimension conditions. These estimates are parallel to the results on compact Riemannian manifolds with the Ricci curvature bounded from below.
引用
收藏
页码:4855 / 4866
页数:12
相关论文
共 14 条
[1]   SHARP MODULUS OF CONTINUITY FOR PARABOLIC EQUATIONS ON MANIFOLDS AND LOWER BOUNDS FOR THE FIRST EIGENVALUE [J].
Andrews, Ben ;
Clutterbuck, Julie .
ANALYSIS & PDE, 2013, 6 (05) :1013-1024
[2]   Some new results on eigenvectors via dimension, diameter, and Ricci curvature [J].
Bakry, D ;
Qian, ZM .
ADVANCES IN MATHEMATICS, 2000, 155 (01) :98-153
[3]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[4]   CURVATURE ASPECTS OF GRAPHS [J].
Bauer, F. ;
Chung, F. ;
Lin, Y. ;
Liu, Y. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :2033-2042
[5]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[6]   General formula for lower bound of the first eigenvalue on Riemannian manifolds [J].
Chen, M ;
Wang, FY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (04) :384-394
[7]  
Chung F., 1994, COMMUN ANAL GEOM, V2, P627
[8]   Harnack inequalities for graphs with non-negative Ricci curvature [J].
Chung, Fan ;
Lin, Yong ;
Yau, S. -T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) :25-32
[9]   Sharp spectral gaps on metric measure spaces [J].
Jiang, Yin ;
Zhang, Hui-Chun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) :1-14
[10]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201