Small dimension PDE for discrete Asian options

被引:9
作者
Benhamou, E [1 ]
Duguet, A
机构
[1] Univ London London Sch Econ & Polit Sci, Financial Market Grp, Houghton WC2A 2AE, England
[2] Goldman Sachs Int, Fixed Income Strategy, Swaps, London EC4A 2BB, England
[3] BNP Paribas, F-75009 Paris, France
[4] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
关键词
discrete Asian option; homogeneity; PDEs; Crank-Nicholson; non-proportional dividends; smile;
D O I
10.1016/S0165-1889(02)00117-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents an efficient method for pricing discrete Asian options in presence of smile and non-proportional dividends. Using an homogeneity property, we show how to reduce an n0 dimensional problem to a one- or two-dimensional one. We examine different numerical specifications of our dimension reduced PDE using a Crank-Nicholson method (interpolation method, grid boundaries, time and space steps) as well as the extension to the case of non-proportional discrete dividends, using a jump condition. We benchmark our results with Quasi Monte-Carlo simulation and a multi-dimensional PDE (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:2095 / 2114
页数:20
相关论文
共 45 条