Steady State Bifurcations of The Reaction-Diffusion System for Gene Propagation

被引:0
作者
Li, Limei [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
来源
PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II | 2010年
关键词
Reaction-diffusion system; spectrum theory; normalized Lyapunov-Schmidt reduction; steady state bifurcations;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Steady state bifurcation solutions are studied for the gene propagation model with the homogenous Neumann boundary condition. By using the spectrum theory and normalized Lyapunov-Schmidt reduction method, we obtain some regular bifurcated solutions.
引用
收藏
页码:629 / 632
页数:4
相关论文
共 11 条
[1]  
ADAMS R, 1975, SOBOLEV SPACE
[2]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[3]   Evolving gene frequencies in a population with three possible alleles at a locus [J].
Bradshaw-Hajek, B. H. ;
Broadbridge, P. ;
Williams, G. H. .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (1-2) :210-217
[4]  
Bradshaw-Hajek BH, 2004, MATH COMPUT MODEL, V39, P1151, DOI 10.1016/j.mcm2003.03.009
[5]  
Fisher R. A., 1922, Proceedings of the Royal Society of Edinburgh, V42, P321, DOI [DOI 10.1017/S0370164600023993, https://doi.org/10.1017/S0370164600023993]
[6]  
LITTLER R A, 1975, Mathematical Biosciences, V25, P151, DOI 10.1016/0025-5564(75)90058-9
[7]  
Ma T, 2005, NONLINEAR SCI A, V53
[8]  
Ma T, 2007, STABILITY BIFURCATIO
[9]  
SLATKIN M, 1973, GENETICS, V75, P733
[10]  
Smith J. M., 1968, Mathematical Ideas in Biology