Improved confidence intervals for a binomial parameter using the Bayesian method

被引:3
作者
Lu, WS [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117543, Singapore
关键词
Bayesian method; binomial distribution; confidence coefficient; confidence level; frequentist;
D O I
10.1080/03610920008832639
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Constructing confidence intervals for a binomial proportion parameter using the Bayesian technique is considered. For an appropriate choice of priors, the proposed Bayes confidence intervals may, in frequentist performance, uniformly improve the traditional C-P (Clopper and Pearson, 1934) confidence intervals when the sample size is not large (n < 30).
引用
收藏
页码:2835 / 2847
页数:13
相关论文
共 50 条
[1]   RMSE-minimizing confidence intervals for the binomial parameter [J].
Feng, Kexin ;
Leemis, Lawrence M. ;
Sasinowska, Heather .
COMPUTATIONAL STATISTICS, 2022, 37 (04) :1855-1885
[2]   RMSE-minimizing confidence intervals for the binomial parameter [J].
Kexin Feng ;
Lawrence M. Leemis ;
Heather Sasinowska .
Computational Statistics, 2022, 37 :1855-1885
[3]   Exact confidence coefficients of confidence intervals for a binomial proportion [J].
Wang, Hsiuying .
STATISTICA SINICA, 2007, 17 (01) :361-368
[4]   CONFIDENCE INTERVALS FOR A BINOMIAL PROPORTION [J].
Pobocikova, Ivana .
APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, :791-800
[5]   Better Binomial Confidence Intervals [J].
Reed, James F., III .
JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2007, 6 (01) :153-161
[6]   ON CONFIDENCE INTERVALS FOR BINOMIAL PAREMETER [J].
Janiga, Ivan .
APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT I, 2007, :371-377
[7]   The cost of using exact confidence intervals for a binomial proportion [J].
Thulin, Mans .
ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 :817-840
[8]   Ensemble confidence intervals for binomial proportions [J].
Park, Hayeon ;
Leemis, Lawrence M. .
STATISTICS IN MEDICINE, 2019, 38 (18) :3460-3475
[9]   Improved exact confidence intervals for the odds ratio in two independent binomial samples [J].
Lin, Che-Yang ;
Yang, Ming-Chung .
BIOMETRICAL JOURNAL, 2006, 48 (06) :1008-1019
[10]   Smallest confidence intervals for one binomial proportion [J].
Wang, Weizhen .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (12) :4293-4306