Phenotype discovery from population brain imaging

被引:26
作者
Gong, Weikang [1 ]
Beckmann, Christian F. [1 ,2 ,3 ]
Smith, Stephen M. [1 ]
机构
[1] Univ Oxford, Ctr Funct MRI Brain FMRIB, Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Oxford, England
[2] Radboud Univ Nijmegen, Med Ctr, Dept Cognit Neurosci, Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
基金
英国惠康基金; 英国医学研究理事会;
关键词
Phenotype discovery; Neuroimaging; Behaviour prediction; UK Biobank; Multimodal independent component analysis; INDEPENDENT COMPONENT ANALYSIS; WHITE-MATTER; MULTIMODAL FUSION; GRAY-MATTER; FMRI; SCHIZOPHRENIA; INDIVIDUALS; ABNORMALITY; MORPHOMETRY;
D O I
10.1016/j.media.2021.102050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neuroimaging allows for the non-invasive study of the brain in rich detail. Data-driven discovery of patterns of population variability in the brain has the potential to be extremely valuable for early disease diagnosis and understanding the brain. The resulting patterns can be used as imaging-derived phenotypes (IDPs), and may complement existing expert-curated IDPs. However, population datasets, comprising many different structural and functional imaging modalities from thousands of subjects, provide a computational challenge not previously addressed. Here, for the first time, a multimodal independent component analysis approach is presented that is scalable for data fusion of voxel-level neuroimaging data in the full UK Biobank (UKB) dataset, that will soon reach 10 0,0 0 0 imaged subjects. This new computational approach can estimate modes of population variability that enhance the ability to predict thousands of phenotypic and behavioural variables using data from UKB and the Human Connectome Project. A high-dimensional decomposition achieved improved predictive power compared with widely used analysis strategies, single-modality decompositions and existing IDPs. In UKB data (14,503 subjects with 47 different data modalities), many interpretable associations with non-imaging phenotypes were identified, including multimodal spatial maps related to fluid intelligence, handedness and disease, in some cases where IDP-based approaches failed. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:14
相关论文
共 54 条
[1]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[2]   Higher Blood Pressure Partially Links Greater Adiposity to Reduced Brain White Matter Integrity [J].
Allen, Ben ;
Muldoon, Matthew F. ;
Gianaros, Peter J. ;
Jennings, J. Richard .
AMERICAN JOURNAL OF HYPERTENSION, 2016, 29 (09) :1029-1037
[3]   A Generalized Least-Square Matrix Decomposition [J].
Allen, Genevera I. ;
Grosenick, Logan ;
Taylor, Jonathan .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) :145-159
[4]   Association of Heritable Cognitive Ability and Psychopathology With White Matter Properties in Children and Adolescents [J].
Alnaes, Dag ;
Kaufmann, Tobias ;
Nhat Trung Doan ;
Cordova-Palomera, Aldo ;
Wang, Yunpeng ;
Bettella, Francesco ;
Moberget, Torgeir ;
Andreassen, Ole A. ;
Westlye, Lars T. .
JAMA PSYCHIATRY, 2018, 75 (03) :287-295
[5]   Multimodal Structural Neuroimaging Markers of Brain Development and ADHD Symptoms [J].
Ball, Gareth ;
Malpas, Charles B. ;
Genc, Sila ;
Efron, Daryl ;
Sciberras, Emma ;
Anderson, Vicki ;
Nicholson, Jan M. ;
Silk, Timothy J. .
AMERICAN JOURNAL OF PSYCHIATRY, 2019, 176 (01) :57-66
[6]   Multimodal Image Analysis of Clinical Influences on Preterm Brain Development [J].
Ball, Gareth ;
Aljabar, Paul ;
Nongena, Phumza ;
Kennea, Nigel ;
Gonzalez-Cinca, Nuria ;
Falconer, Shona ;
Chew, Andrew T. M. ;
Harper, Nicholas ;
Wurie, Julia ;
Rutherford, Mary A. ;
Counsell, Serena J. ;
Edwards, A. David .
ANNALS OF NEUROLOGY, 2017, 82 (02) :233-246
[7]   Tensorial extensions of independent component analysis for multisubject FMRI analysis [J].
Beckmann, CF ;
Smith, SM .
NEUROIMAGE, 2005, 25 (01) :294-311
[8]   Method for Multimodal analysis of independent source differences in schizophrenia: Combining gray matter structural and auditory oddball functional data [J].
Calhoun, VD ;
Adali, T ;
Giuliani, NR ;
Pekar, JJ ;
Kiehl, KA ;
Pearlson, GD .
HUMAN BRAIN MAPPING, 2006, 27 (01) :47-62
[9]  
Calhoun Vince D, 2016, Biol Psychiatry Cogn Neurosci Neuroimaging, V1, P230
[10]   The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features [J].
Cui, Zaixu ;
Gong, Gaolang .
NEUROIMAGE, 2018, 178 :622-637