Unsupervised machine learning of topological phase transitions from experimental data

被引:50
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Diagnosis of spindle failure by unsupervised machine learning from in-process monitoring data in machining
    Godreau, Victor
    Ritou, Mathieu
    de Castelbajac, Cosme
    Furet, Benoit
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (02) : 749 - 759
  • [42] Sheep's coping style can be identified by unsupervised machine learning from unlabeled data
    Cakmakci, Cihan
    BEHAVIOURAL PROCESSES, 2022, 194
  • [43] Unsupervised machine learning for detecting soil layer boundaries from cone penetration test data
    Hudson, Kenneth S.
    Ulmer, Kristin J.
    Zimmaro, Paolo
    Kramer, Steven L.
    Stewart, Jonathan P.
    Brandenberg, Scott J.
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2023, 52 (11) : 3201 - 3215
  • [44] Unsupervised phase learning and extraction from quasiperiodic multidimensional time-series data
    Jatesiktat, Prayook
    Lim, Guan Ming
    Kuah, Christopher Wee Keong
    Ang, Wei Tech
    APPLIED SOFT COMPUTING, 2020, 93
  • [45] Unsupervised Machine Learning by Graph Analytics on Heterogeneous Network Device Data
    Lin, Jeffrey S.
    Guven, Erhan
    Duong, Lien T.
    Dinmore, Matthew D.
    Hanke, Paul A.
    Magen, Beth G.
    Chavis, Jeffrey S.
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 144 - 151
  • [46] Unsupervised Machine Learning Techniques for Network Intrusion Detection on Modern Data
    Verkerken, Miel
    D'hooge, Laurens
    Wauters, Tim
    Volckaert, Bruno
    De Turck, Filip
    2020 FOURTH CYBER SECURITY IN NETWORKING CONFERENCE (CSNET), 2020,
  • [47] An unsupervised discriminative extreme learning machine and its applications to data clustering
    Peng, Yong
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEUROCOMPUTING, 2016, 174 : 250 - 264
  • [48] Unsupervised machine learning framework for early machine failure detection in an industry
    Hasan, Nabeela
    Chaudhary, Kiran
    Alam, Mansaf
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (05) : 1497 - 1508
  • [49] Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet Transmission Spectra
    Matchev, Konstantin T.
    Matcheva, Katia
    Roman, Alexander
    PLANETARY SCIENCE JOURNAL, 2022, 3 (09):
  • [50] Generating Artificial Sensor Data for the Comparison of Unsupervised Machine Learning Methods
    Zimmering, Bernd
    Niggemann, Oliver
    Hasterok, Constanze
    Pfannstiel, Erik
    Ramming, Dario
    Pfrommer, Julius
    SENSORS, 2021, 21 (07)