Unsupervised machine learning of topological phase transitions from experimental data

被引:50
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Topological Machine Learning for Mixed Numeric and Categorical Data
    Wu, Chengyuan
    Hargreaves, Carol Anne
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2021, 30 (05)
  • [32] Importance of feature construction in machine learning for phase transitions
    Jang, Inhyuk
    Kaur, Supreet
    Yethiraj, Arun
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (09)
  • [33] Data-driven track geometry fault localisation using unsupervised machine learning
    Popov, K.
    De Bold, R.
    Chai, H. -K.
    Forde, M. C.
    Ho, C. L.
    Hyslip, J. P.
    Kashani, H. F.
    Kelly, R.
    Hsu, S. S.
    Rippin, M.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 377
  • [34] Topological phase transitions in tilted optical lattices
    Kolovsky, Andrey R.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [35] Link between Zitterbewegung and topological phase transitions
    Shen, Xin
    Zhu, Yan-Qing
    Li, Zhi
    PHYSICAL REVIEW B, 2022, 106 (18)
  • [36] Universal Landau-Zener regimes in dynamical topological phase transitions
    Ge, Yang
    Rigol, Marcos
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [37] Out-of-time-order correlation as a witness for topological phase transitions
    Bin, Qian
    Wan, Liang-Liang
    Nori, Franco
    Wu, Ying
    Lue, Xin-You
    PHYSICAL REVIEW B, 2023, 107 (02)
  • [38] Learning from streaming data with unsupervised heterogeneous domain adaptation
    Moradi, Mona
    Rahmanimanesh, Mohammad
    Shahzadi, Ali
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2025, 19 (01) : 61 - 81
  • [39] The Utility of Unsupervised Machine Learning in Anatomic Pathology
    McAlpine, Ewen D.
    Michelow, Pamela
    Celik, Turgay
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2022, 157 (01) : 5 - 14
  • [40] Conjugate Thermal Optimization With Unsupervised Machine Learning
    Smith, Reid
    Dutta, Sandip
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (05):