Unsupervised machine learning of topological phase transitions from experimental data

被引:50
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Scaling theory of topological phase transitions
    Chen, Wei
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (05)
  • [22] Topological phase transitions in superradiance lattices
    Wang, Da-Wei
    Cai, Han
    Yuan, Luqi
    Zhu, Shi-Yao
    Liu, Ren-Bao
    OPTICA, 2015, 2 (08): : 712 - 715
  • [23] Predicting experimental electrophilicities from quantum and topological descriptors: A machine learning approach
    Hoffmann, Guillaume
    Balcilar, Muhammet
    Tognetti, Vincent
    Heroux, Pierre
    Gauzere, Benoit
    Adam, Sebastien
    Joubert, Laurent
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (24) : 2124 - 2136
  • [24] Using Unsupervised Machine Learning for Data Quality. Application to Financial Governmental Data Integration
    Necba, Hanae
    Rhanoui, Maryem
    El Asri, Bouchra
    BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 197 - 209
  • [25] Chatter Classification in Turning using Machine Learning and Topological Data Analysis
    Khasawneh, Firas A.
    Munch, Elizabeth
    Perea, Jose A.
    IFAC PAPERSONLINE, 2018, 51 (14): : 195 - 200
  • [26] Topological quantum phase transitions of Chern insulators in disk geometry
    Cheng, Qing-Qing
    Luo, Wei-Wei
    He, Ai-Lei
    Wang, Yi-Fei
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (35)
  • [27] Machine learning insights into CaCO3 phase transitions: Synthesis and phase prediction
    Huang, Yanqi
    De Spiegeleer, Bart
    Parakhonskiy, Bogdan
    Skirtach, Andre G.
    CERAMICS INTERNATIONAL, 2024, 50 (13) : 23284 - 23295
  • [28] Topological phase transitions and topological flat bands on the ruby lattice
    Yang, Yuan
    Shu, Chang-Rong
    Li, Xiao-Bing
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [29] Predicting rock mass strength from drilling data using synergistic unsupervised and supervised machine learning approaches
    Komadja, Gbetoglo Charles
    Westman, Erik
    Rana, Aditya
    Vitalis, Anye
    EARTH SCIENCE INFORMATICS, 2025, 18 (03)
  • [30] Unsupervised interpretable learning of topological indices invariant under permutations of atomic bands
    Balabanov, Oleksandr
    Granath, Mats
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):