Unsupervised machine learning of topological phase transitions from experimental data

被引:50
|
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Unsupervised learning of interacting topological phases from experimental observables
    Yu, Li-Wei
    Zhang, Shun-Yao
    Shen, Pei-Xin
    Deng, Dong-Ling
    FUNDAMENTAL RESEARCH, 2024, 4 (05): : 1086 - 1091
  • [2] Unsupervised learning of topological phase diagram using topological data analysis
    Park, Sungjoon
    Hwang, Yoonseok
    Yang, Bohm-Jung
    PHYSICAL REVIEW B, 2022, 105 (19)
  • [3] Learning quantum phase transitions through topological data analysis
    Tirelli, Andrea
    Costa, Natanael C.
    PHYSICAL REVIEW B, 2021, 104 (23)
  • [4] Topological persistence machine of phase transitions
    Quoc Hoan Tran
    Chen, Mark
    Hasegawa, Yoshihiko
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [5] Robust identification of topological phase transition by self-supervised machine learning approach
    Ho, Chi-Ting
    Wang, Daw-Wei
    NEW JOURNAL OF PHYSICS, 2021, 23 (08):
  • [6] Unsupervised identification of topological phase transitions using predictive models
    Greplova, Eliska
    Valenti, Agnes
    Boschung, Gregor
    Schafer, Frank
    Lorch, Niels
    Huber, Sebastian D.
    NEW JOURNAL OF PHYSICS, 2020, 22 (04):
  • [7] Unsupervised learning using topological data augmentation
    Balabanov, Oleksandr
    Granath, Mats
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [8] Topological classification of dynamical phase transitions
    Vajna, Szabolcs
    Dora, Balazs
    PHYSICAL REVIEW B, 2015, 91 (15):
  • [9] Identifying Topological Phase Transitions in Experiments Using Manifold Learning
    Lustig, Eran
    Yair, Or
    Talmon, Ronen
    Segev, Mordechai
    PHYSICAL REVIEW LETTERS, 2020, 125 (12)
  • [10] Unsupervised machine learning account of magnetic transitions in the Hubbard model
    Ch'ng, Kelvin
    Vazquez, Nick
    Khatami, Ehsan
    PHYSICAL REVIEW E, 2018, 97 (01)