Mixed metric dimension of graphs with edge disjoint cycles

被引:17
作者
Sedlar, Jelena [1 ]
Skrekovski, Riste [2 ,3 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split, Croatia
[2] Univ Ljubljana, FMF, Ljubljana 1000, Slovenia
[3] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Mixed metric dimension; Unicyclic graphs; Cactus graphs;
D O I
10.1016/j.dam.2021.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a connected graph G, the cardinality of the smallest ordered set of vertices that distinguishes every element of V(G). E(G) is called the mixed metric dimension of G. In this paper we first establish the exact value of the mixed metric dimension of a unicyclic graph G which is derived from the structure of G. We further consider graphs G with edge disjoint cycles, where for each cycle Ci of G we define a unicyclic subgraph G(i) of G in which C-i is the only cycle. Applying the result for unicyclic graph to the subgraph G(i) of every cycle C-i then yields the exact value of the mixed metric dimension of such a graph G. The obtained formulas for the exact value of the mixed metric dimension yield a simple sharp upper bound on the mixed metric dimension, and we conclude the paper conjecturing that the analogous bound holds for general graphs with prescribed cyclomatic number. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1953, Theory and applications of distance geometry
[2]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[3]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[4]  
Chartrand G., 2003, SURVEY CONGRESSUS NU, V160, P47
[5]   A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs [J].
Eroh, Linda ;
Kang, Cong X. ;
Yi, Eunjeong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) :731-747
[6]  
Harary F., 1976, Ars Comb., V2, P191
[7]  
Kelenc A., 2020, THESIS U MARIBOR
[8]   Uniquely identifying the edges of a graph: The edge metric dimension [J].
Kelenc, Aleksander ;
Tratnik, Niko ;
Yero, Ismael G. .
DISCRETE APPLIED MATHEMATICS, 2018, 251 :204-220
[9]   Mixed metric dimension of graphs [J].
Kelenc, Aleksander ;
Kuziak, Dorota ;
Taranenko, Andrei ;
Yero, Ismael G. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :429-438
[10]   Landmarks in graphs [J].
Khuller, S ;
Raghavachari, B ;
Rosenfeld, A .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) :217-229