Single-Shot Secure Quantum Network Coding for General Multiple Unicast Network With Free One-Way Public Communication

被引:7
作者
Kato, Go [1 ]
Owari, Masaki [2 ]
Hayashi, Masahito [3 ,4 ,5 ,6 ,7 ]
机构
[1] NTT Corp, NTT Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan
[2] Shizuoka Univ, Fac Informat, Dept Comp Sci, Hamamatsu, Shizuoka 4328011, Japan
[3] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen 518000, Peoples R China
[4] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[7] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
Quantum networks; Security; Network coding; Unicast; Quantum state; Encoding; Quantum entanglement; Secrecy; quantum state; network coding; multiple unicast; general network; one-way public communication; SCHEMES;
D O I
10.1109/TIT.2021.3078812
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is natural in a quantum network system that multiple users intend to send their quantum message to their respective receivers, which is called a multiple unicast quantum network. We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network from a secure classical network code. Our code correctly transmits quantum states when there is no attack. It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack when the attack satisfies a certain natural condition. In our security proof, the eavesdropper is allowed to modify wiretapped information dependently on the previously wiretapped messages. Our protocol guarantees the secrecy by utilizing one-way classical information transmission (public communication) in the same direction as the quantum network although the verification of quantum information transmission requires two-way classical communication. In the protocol, some nodes may share secret randomness as resources in advance. Our secure network code can be applied to several networks including the butterfly network.
引用
收藏
页码:4564 / 4587
页数:24
相关论文
共 49 条
[1]  
Agarwal G. K., 2016, ARXIV160607561
[2]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[3]  
[Anonymous], 2008, INFORM THEORY NETWOR
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bhattad K., 2005, P NETCOD APR, P104
[6]   Universal Blind Quantum Computation [J].
Broadbent, Anne ;
Fitzsimons, Joseph ;
Kashefi, Elham .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :517-526
[7]   Secure network coding [J].
Cai, N ;
Yeung, RW .
ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, :323-323
[8]  
Cai N, 2006, COMMUN INF SYST, V6, P37
[9]   Theory of Secure Network Coding [J].
Cai, Ning ;
Chan, Terence .
PROCEEDINGS OF THE IEEE, 2011, 99 (03) :421-437
[10]   Secure Network Coding on a Wiretap Network [J].
Cai, Ning ;
Yeung, Raymond W. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) :424-435