Data-driven approaches to the modelling of bioprocesses

被引:9
作者
Bernaerts, K [1 ]
Van Impe, JF [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, B-3001 Heverlee, Belgium
关键词
bioprocess modelling; data collection; Fisher information matrix; optimal experiment design; parameter estimation; system identification;
D O I
10.1191/0142331204tm127oa
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key ingredient during structure characterization and parameter estimation. Accurate system identification can only be guaranteed if the experimental data contain sufficient information on the process dynamics. In this respect, sufficient effort should be spent on optimal experiment design in order to maximize the information that can be extracted from data, particularly because experimental data generation for bioprocesses is usually a time-consuming, labour-intensive and costly job. This paper reviews the modelling cycle of bioprocesses, emphasizing the need for careful experimental data collection. The concepts of optimal experiment design for parameter estimation are outlined in particular. Application of this methodology is illustrated for a case study involving the optimal estimation of two model parameters describing temperature dependence of microbial growth kinetics.
引用
收藏
页码:349 / 372
页数:24
相关论文
共 47 条
[1]  
[Anonymous], 1988, Nonlinear regression analysis and its applications
[2]   Statistical tools for optimal dynamic model building [J].
Asprey, SP ;
Macchietto, S .
COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) :1261-1267
[3]  
Bailey JE., 1986, BIOCH ENG FUNDAMENTA, P421
[4]  
BALSACANTO E, 1998, P ACOFOP 4 AUT CONTR, P271
[5]   OPTIMAL EXPERIMENTAL-DESIGN FOR PARAMETER-ESTIMATION IN UNSTRUCTURED GROWTH-MODELS [J].
BALTES, M ;
SCHNEIDER, R ;
STURM, C ;
REUSS, M .
BIOTECHNOLOGY PROGRESS, 1994, 10 (05) :480-488
[6]   Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach [J].
Banga, JR ;
Versyck, KJ ;
Van Impe, JF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (10) :2425-2430
[7]   Improving food processing using modern optimization methods [J].
Banga, JR ;
Balsa-Canto, E ;
Moles, CG ;
Alonso, AA .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2003, 14 (04) :131-144
[8]   A DYNAMIC APPROACH TO PREDICTING BACTERIAL-GROWTH IN FOOD [J].
BARANYI, J ;
ROBERTS, TA .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1994, 23 (3-4) :277-294
[9]   Dynamic optimization in a discontinuous world [J].
Barton, PI ;
Allgor, RJ ;
Feehery, WF ;
Galan, S .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (03) :966-981
[10]   On the design of optimal dynamic experiments for parameter estimation of a Ratkowsky-type growth kinetics at suboptimal temperatures [J].
Bernaerts, K ;
Versyck, KJ ;
Van Impe, JF .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2000, 54 (1-2) :27-38