First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X=S, Se, Te) chalcogenides

被引:29
作者
Hussain, Sajjad [1 ]
Murtaza, G. [2 ]
Khan, Shah Haidar [1 ]
Khan, Afzal [1 ]
Ali, Malak Azmat [1 ]
Faizan, M. [1 ]
Mahmood, Asif [3 ]
Khenata, R. [4 ]
机构
[1] Univ Peshawar, Dept Phys, Peshawar, Pakistan
[2] Islamia Coll Peshawar, Mat Modeling Lab, Dept Phys, Kpk, Pakistan
[3] King Saud Univ, Coll Engn, Dept Chem Engn, POB 2455, Riyadh 11451, Saudi Arabia
[4] Univ Mascara, Fac Sci & Technol, LPQ3M Lab, Mascara, Algeria
关键词
Chalcogenides; Electronic materials; Optical materials; Electronic structure; Thermoelectrics; OPTICAL-PROPERTIES; MICROWAVE; CU2ZNSNS4;
D O I
10.1016/j.materresbull.2016.03.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, structural, electronic, optical and thermoelectric properties of Cu2CdSnX4 (X = S, Se, Te) have been studied through the full potential linearized augmented plane wave method. Calculated ground state lattice parameters are in good agreement with the experimental results. Lattice constant and bulk moduli vary inversely by replacing the anion X from S to Te in Cu2CdSnX4. The WC-GGA shows that the materials are metallic in nature. The EV-GGA predicts better band gaps compared to WC-GGA. The calculated bandgap values are 1.8, 1.06 and 0.8042 for Cu2CdSnX4, Cu2CdSnX4, Cu2CdSnX4 respectively. Cd-d, Sn-s and X-p states contribute significantly in the density of states of the compounds. Absorption peaks and optical conductivity is high in the visible and ultraviolet energy regions. All the semiconductors have figure of merit above 0.70. The optical and thermoelectric properties clearly show that Cu2CdSnX4 are potential candidates in the fields of solar cell and thermoelectric technology. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 29 条
[1]  
Blaha P., 2012, AUGMENTED PLANE WAVE
[2]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[3]   Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors [J].
Chen, Shiyou ;
Walsh, Aron ;
Luo, Ye ;
Yang, Ji-Hui ;
Gong, X. G. ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2010, 82 (19)
[4]   Synthesis and photoresponse of novel Cu2CdSnS4 semiconductor nanorods [J].
Cui, Yong ;
Wang, Gang ;
Pan, Daocheng .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) :12471-12473
[5]  
Dong Y., 2014, APPL PHYS LETT, V104
[6]   EXACT EXCHANGE-ONLY POTENTIALS AND THE VIRIAL RELATION AS MICROSCOPIC CRITERIA FOR GENERALIZED GRADIENT APPROXIMATIONS [J].
ENGEL, E ;
VOSKO, SH .
PHYSICAL REVIEW B, 1993, 47 (20) :13164-13174
[7]   Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit [J].
Fan, Feng-Jia ;
Yu, Bo ;
Wang, Yi-Xiu ;
Zhu, Yan-Long ;
Liu, Xiao-Jing ;
Yu, Shu-Hong ;
Ren, Zhifeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (40) :15910-15913
[8]   Earth Abundant Element Cu2Zn(Sn1-xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication [J].
Ford, Grayson M. ;
Guo, Qijie ;
Agrawal, Rakesh ;
Hillhouse, Hugh W. .
CHEMISTRY OF MATERIALS, 2011, 23 (10) :2626-2629
[9]   Quaternary Cu2CdSnS4 nanoparticles synthesised by microwave irradiation method [J].
Guan, Hao ;
Shi, YuFen ;
Hou, Haijun ;
Wang, Xu ;
Yu, Fangli .
MICRO & NANO LETTERS, 2014, 9 (04) :251-252
[10]  
Guan H, 2013, CHALCOGENIDE LETT, V10, P367