Exact solution of the supersymmetric sinh-Gordon model with boundary

被引:15
作者
Ahn, C
Nepomechie, RI
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[2] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea
基金
美国国家科学基金会;
关键词
sinh-Gordon model; supersymmetry; boundary S-matrix; Bethe ansatz; duality; integrable spin chain;
D O I
10.1016/S0550-3213(00)00440-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The boundary supersymmetric sinh-Gordon model is an integrable quantum field theory in 1 + 1 dimensions with bulk N = 1 supersymmetry, whose bulk and boundary S matrices are not diagonal. We present an exact solution of this model. In particular, we derive an exact inversion identity and the corresponding thermodynamic Bethe ansatz equations. We also compute the boundary entropy, and find a rich pattern of boundary roaming trajectories corresponding to c < 3/2 superconformal models. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:611 / 640
页数:30
相关论文
共 60 条
[1]   UNIVERSAL NONINTEGER GROUND-STATE DEGENERACY IN CRITICAL QUANTUM-SYSTEMS [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :161-164
[2]   THERMODYNAMICS AND FORM-FACTORS OF SUPERSYMMETRIC INTEGRABLE FIELD-THEORIES [J].
AHN, C .
NUCLEAR PHYSICS B, 1994, 422 (03) :449-475
[3]   Supersymmetric sine-Gordon model and the eight-vertex free fermion model with boundary [J].
Ahn, C ;
Koo, WM .
NUCLEAR PHYSICS B, 1996, 482 (03) :675-692
[4]   Exact boundary scattering matrices of the supersymmetric sine-Gordon theory on a half-line [J].
Ahn, C ;
Koo, WM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18) :5845-5854
[5]   Boundary flows in general coset theories [J].
Ahn, C ;
Rim, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (13) :2509-2525
[6]   COMPLETE S-MATRICES OF SUPERSYMMETRIC SINE-GORDON THEORY AND PERTURBED SUPERCONFORMAL MINIMAL MODEL [J].
AHN, C .
NUCLEAR PHYSICS B, 1991, 354 (01) :57-84
[7]   FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY [J].
AHN, C ;
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :409-439
[8]  
AHN C, 1995, PROG THEOR PHYS SUPP, P165
[9]  
Ahn C., unpublished
[10]   SOLUTION OF THE KONDO PROBLEM [J].
ANDREI, N ;
FURUYA, K ;
LOWENSTEIN, JH .
REVIEWS OF MODERN PHYSICS, 1983, 55 (02) :331-402