PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning

被引:56
作者
Born, Jannis [1 ,2 ]
Manica, Matteo [1 ]
Oskooei, Ali [1 ]
Cadow, Joris [1 ]
Markert, Greta [1 ,3 ]
Martinez, Maria Rodriguez [1 ]
机构
[1] IBM Res Europe, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[3] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
基金
欧盟地平线“2020”;
关键词
BREAST-CANCER CELLS; DRUG; GENOMICS; DESIGN;
D O I
10.1016/j.isci.2021.102269
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the advent of deep generative models in computational chemistry, in-silico drug design is undergoing an unprecedented transformation. Although deep learning approaches have shown potential in generating compounds with desired chemical properties, they disregard the cellular environment of target diseases. Bridging systems biology and drug design, we present a reinforcement learning method for de novo molecular design from gene expression profiles. We construct a hybrid Variational Autoencoder that tailors molecules to target-specific transcriptomic profiles, using an anticancer drug sensitivity prediction model (PaccMann) as reward function. Without incorporating information about anticancer drugs, the molecule generation is biased toward compounds with high predicted efficacy against cell lines or cancer types. The generation can be further refined by subsidiary constraints such as toxicity. Our cancer-type-specific candidate drugs are similar to cancer drugs in drug-likeness, synthesizability, and solubility and frequently exhibit the highest structural similarity to compounds with known efficacy against these cancer types.
引用
收藏
页数:28
相关论文
共 68 条
[1]   SMILES-based deep generative scaffold decorator for de-novo drug design [J].
Arus-Pous, Josep ;
Patronov, Atanas ;
Bjerrum, Esben Jannik ;
Tyrchan, Christian ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
[2]   Randomized SMILES strings improve the quality of molecular generative models [J].
Arus-Pous, Josep ;
Johansson, Simon Viet ;
Prykhodko, Oleksii ;
Bjerrum, Esben Jannik ;
Tyrchan, Christian ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2019, 11 (01)
[3]  
Aumentado-Armstrong T., 2018, LATENT MOL OPTIMIZAT
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]  
Beckham C., 2019, ADV NEUR IN, P4348
[6]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[7]  
Bickerton GR, 2012, NAT CHEM, V4, P90, DOI [10.1038/NCHEM.1243, 10.1038/nchem.1243]
[8]  
Bowman S.R., 2016, P 20 SIGNLL C COMP N, P10
[9]   PaccMann: a web service for interpretable anticancer compound sensitivity prediction [J].
Cadow, Joris ;
Born, Jannis ;
Manica, Matteo ;
Oskooei, Ali ;
Martinez, Maria Rodriguez .
NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) :W502-W508
[10]  
Chayawat C., 2019, WATER AIR SOIL POLL, V45, P50, DOI [DOI 10.1016/J.AMJMS.2021.03.001,00089-6, 10.2306/scienceasia1513-1874.2019.45.050, DOI 10.1007/s11270-007-9372-6]