Optimum Loss Factor for a Perfectly Matched Layer in Finite-Difference Time-Domain Acoustic Simulation

被引:7
|
作者
Mokhtari, Parham [1 ]
Takemoto, Hironori [1 ]
Nishimura, Ryouichi [1 ]
Kato, Hiroaki [1 ]
机构
[1] Natl Inst Informat & Commun Technol, Kyoto 6190288, Japan
来源
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING | 2010年 / 18卷 / 05期
关键词
Acoustic simulation; finite-difference time-domain (FDTD); perfectly matched layer (PML); MAXWELLS EQUATIONS; NUMERICAL-SOLUTION; ABSORPTIVE MEDIA; WAVES;
D O I
10.1109/TASL.2009.2035036
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A perfectly matched layer (PML) is commonly used in finite-difference time-domain (FDTD) simulation to absorb outgoing waves and thereby reduce artifactual reflections from the computational domain boundaries. However, previous two-dimensional studies have noted that increasing the PML loss factor does not monotonically improve the PML's performance. This paper evaluates the PML in three-dimensional FDTD acoustic simulations. It confirms the existence of an optimum loss factor, with higher values degrading PML performance. An empirical formula is offered for estimating the optimum loss factor for a linear or a quadratic profile, that depends on the PML depth, sound speed, and grid resolution.
引用
收藏
页码:1068 / 1071
页数:4
相关论文
共 50 条
  • [41] Improved Weakly Conditionally Stable Finite-Difference Time-Domain Method
    Chen, Juan
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2012, 27 (05): : 413 - 419
  • [42] Dispersive Periodic Boundary Conditions for Finite-Difference Time-Domain Method
    ElMahgoub, Khaled
    Elsherbeni, Atef Z.
    Yang, Fan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 2118 - 2122
  • [43] Efficient Implementation of the UPML in the Generalized Finite-Difference Time-Domain Method
    Bernard, Laurent
    Torrado, Ruben Rodriguez
    Pichon, Lionel
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3492 - 3495
  • [44] Finite-Difference Time-Domain Simulations of Radon Transport in Porous Media
    Tayebi, A.
    Bezzout, H.
    El Maghraoui, M.
    El Faylali, H.
    ATOM INDONESIA, 2020, 46 (03) : 171 - 175
  • [45] Parallel finite-difference time-domain modeling of an opal photonic crystal
    Vaccari, Alessandro
    Cristoforetti, Luca
    Lesina, Antonino Cala
    Ramunno, Lora
    Chiappini, Andrea
    Prudenzano, Francesco
    Bozzoli, Alessandro
    Calliari, Lucia
    OPTICAL ENGINEERING, 2014, 53 (07)
  • [46] Transient Analysis of Anisotropic Dielectrics and Ferromagnetic Materials Based on Unconditionally Stable Perfectly-Matched-Layer (PML) Complex-Envelope (CE) Finite-Difference Time-Domain (FDTD) Method
    Ha, Sang-Gyu
    Cho, Jeahoon
    Jung, Kyung-Young
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2017, E100B (10) : 1879 - 1883
  • [47] Simpler and more intuitive interpretation of stability condition for finite-difference time-domain method
    Ichikawa, Hiroyuki
    OPTICAL REVIEW, 2010, 17 (04) : 435 - 437
  • [48] Finite-difference Time-domain Study on Birefringence Changes of the Axon During Neural Activation
    Lee, Jonghwan
    Kim, Sung June
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2009, 13 (02) : 272 - 278
  • [49] A Finite Element Method Approach to the Finite-Difference Time-Domain Scheme with Cut Cells
    Jacobsson, Per
    Rylander, Thomas
    ELECTROMAGNETICS, 2010, 30 (1-2) : 82 - 93
  • [50] Tomographic Reconstruction of Melanin Structures of Optical Coherence Tomography via the Finite-Difference Time-Domain Simulation
    Huang, Shi-Hao
    Wang, Shiang-Jiu
    Tseng, Snow H.
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XIII, 2015, 9328