The biotechnological potential of microbial communities from Antarctic soils and sediments: Application to low temperature biogenic methane production

被引:9
作者
Aguilar-Munoz, P. [1 ,2 ]
Lavergne, C. [2 ,3 ]
Chamy, R. [1 ]
Cabrol, L. [4 ,5 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Escuela Ingn Bioquim, Valparaiso, Chile
[2] Univ Playa Ancha, HUB AMBIENTAL UPLA, Valparaiso, Chile
[3] Univ Playa Ancha, Ctr Estudios Avanzados, Lab Aquat Environm Res, Vina Del Mar, Chile
[4] Aix Marseille Univ, Mediterranean Inst Oceanog MIO, UMR 7294,IRD, CNRS, Marseille, France
[5] Univ Chile, Millennium Inst BASE Biodivers Antarctic & Subanta, Santiago, Chile
关键词
Polar region; Bioprocesses; Archaea; Bacteria; High throughput sequencing; QPCR; Microcosms; WASTE-WATER TREATMENT; 15; DEGREES-C; SP NOV; ANAEROBIC TREATMENT; GEN; NOV; METHANOGENIC COMMUNITIES; UASB REACTOR; LENA DELTA; PERMAFROST; PERFORMANCE;
D O I
10.1016/j.jbiotec.2022.04.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Anaerobic digestion (AD) is an attractive bioprocess for waste treatment and energy recovery through methanerich biogas production. Under temperate to cold climate, the implementation of AD for low-organic load wastewater treatment has been limited to date, due to the energetic and economic cost of maintaining optimal mesophilic temperature. Hence, we aim at (i) exploring the biotechnological potential of a microbial inoculum from Antarctic soils and sediments to run AD at low temperatures; and (ii) evaluating the effect of temperature over a psychrophilic-mesophilic range on both methane production rates and microbial community composition. Methane production stimulated by acetate amendment was detected from 5 to 37 degrees C, with a maximum at 25 degrees C, corresponding to the highest relative abundance of methanogenic archaea (c. 21.4% of the total community). From 5 to 25 degrees C, the predominant methanogen was Methanosaeta, while it shifted to Methanocorpusculum at 30 degrees C. Compared with an industrial mesophilic sludge, the relative methane production rate at 5 degrees C (compared to the maximum) was 40% greater in the Antarctic inoculum. Microbial communities from permanently cold Antarctic sediments efficiently produce methane at low temperatures revealing a biotechnological potential for the treatment of low-organic load residues in cold regions.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 89 条
[21]   Similar Methanogenic Shift but Divergent Syntrophic Partners in Anaerobic Digesters Exposed to Direct versus Successive Ammonium Additions [J].
Hardy, Julie ;
Bonin, Patricia ;
Lazuka, Adele ;
Gonidec, Estelle ;
Guasco, Sophie ;
Valette, Corinne ;
Lacroix, Sebastien ;
Cabrol, Lea .
MICROBIOLOGY SPECTRUM, 2021, 9 (02)
[22]  
HENZE M, 1983, WATER SCI TECHNOL, V15, P1
[23]   Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater [J].
Ho, Jaeho ;
Sung, Shihwu .
BIORESOURCE TECHNOLOGY, 2010, 101 (07) :2191-2196
[24]   Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat [J].
Hoj, Lone ;
Olsen, Rolf A. ;
Torsvik, Vigdis L. .
ISME JOURNAL, 2008, 2 (01) :37-48
[25]   Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat [J].
Horn, MA ;
Matthies, C ;
Küsel, K ;
Schramm, A ;
Drake, HL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (01) :74-83
[26]   Flavobacterium frigidarium sp nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica [J].
Humphry, DR ;
George, A ;
Black, GW ;
Cummings, SP .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :1235-1243
[27]  
JETTEN MSM, 1992, FEMS MICROBIOL LETT, V88, P181, DOI 10.1111/j.1574-6968.1992.tb04987.x
[28]   Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica [J].
Karr, EA ;
Ng, JM ;
Belchik, SM ;
Sattley, WM ;
Madigan, MT ;
Achenbach, LA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (02) :1663-1666
[29]   Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage [J].
Keating, C. ;
Hughes, D. ;
Mahony, T. ;
Cysneiros, D. ;
Ijaz, U. Z. ;
Smith, C. J. ;
O'Flaherty, V. .
FEMS MICROBIOLOGY ECOLOGY, 2018, 94 (07)
[30]   Advances in poultry litter disposal technology - a review [J].
Kelleher, BP ;
Leahy, JJ ;
Henihan, AM ;
O'Dwyer, TF ;
Sutton, D ;
Leahy, MJ .
BIORESOURCE TECHNOLOGY, 2002, 83 (01) :27-36