Electrical Characteristics of a Ga-free T2SL Mid-wave Infrared nBn Detector Based on an InAs/AlAsSb/InAsSb Barrier

被引:3
作者
Jang, Ahreum [1 ]
Lee, Hyun-Jin [1 ]
Kim, Young Chul [1 ]
Eom, Jun Ho [1 ]
Jung, Hyun Chul [1 ]
Kang, Ko-Ku [1 ]
Ryu, Sung Min [1 ]
Lee, Tae Hee [1 ]
Kim, Jong Gi [1 ]
Kim, Young Ho [1 ]
Jung, Han [1 ]
机构
[1] i3system Inc, R&D Ctr, 26-32,Gajeongbuk Ro, Daejeon 34113, South Korea
关键词
Type-II superlattice; T2SL; mid-wavelength infrared; barrier infrared detector; BIRD; photodetector; II SUPERLATTICE;
D O I
10.1007/s11664-022-09664-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ga-free InAs/InAsSb type-II superlattice (T2SL) has been used as an absorption layer of a high-operating-temperature mid-wavelength infrared nBn detector because it has a long Shockley-Read-Hall limited minority carrier lifetime (similar to 10 mu s). In the Ga-free T2SL nBn detector, the ternary barrier was easily oxidized, and then the oxidized barrier contributes to a surface leakage current. Also, since the ternary barrier forms an unavoidable valence band offset (VBO) with an absorption layer, the nBn device has a high turn-on voltage. The high turn-on voltage induces an electric field in the absorption layer, which increases the dark current of the device. In this work, we studied an InAs/AlAsSb/InAsSb T2SL barrier instead of a ternary barrier, having a minimal VBO and a turn-on voltage close to zero. As a result, the fabricated nBn device with the T2SL barrier exhibited a dark current density of similar to 1.57x10(-8) A/cm(2) at 130 K, which is 20 times lower than the dark current density of the nBn device with the ternary barrier.
引用
收藏
页码:4681 / 4688
页数:8
相关论文
共 21 条
[1]   A comprehensive set of simulation tools to model and design high performance Type-II InAs/GaSb superlattice infrared detectors [J].
Delmas, M. ;
Liang, B. L. ;
Huffaker, D. L. .
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XVI, 2019, 10926
[2]  
Delmas M., 2021, P SOC PHOTO-OPT INS, V11858
[3]   Electrical and optical properties of infrared photodiodes using the InAs/Ga1-xInxSb superlattice in heterojunctions with GaSb [J].
Johnson, JL ;
Samoska, LA ;
Gossard, AC ;
Merz, JL ;
Jack, MD ;
Chapman, GR ;
Baumgratz, BA ;
Kosai, K ;
Johnson, SM .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (02) :1116-1127
[4]   HOT InAs/InAsSb nBn detector development for SWaP detector [J].
Kim, Young Ho ;
Lee, Hyun Jin ;
Kim, Young Chul ;
Eom, Jun Ho ;
Son, Jung O. ;
Jung, Hyun Chul ;
Kang, Ko Ku ;
Ryu, Seong Min ;
Lee, Tae Hee ;
Kim, Jong Gi ;
Jang, Ahreum ;
Kim, Sun Ho ;
Choi, Jong Hwa ;
Jung, Han .
INFRARED TECHNOLOGY AND APPLICATIONS XLVII, 2021, 11741
[5]   Surface leakage current reduction of InAsSb nBn MWIR HOT detector via hydrogen peroxide treatment [J].
Lee, Hyun Jin ;
Ko, Sung Yong ;
Kim, Young Ho ;
Nah, Junghyo .
INFRARED PHYSICS & TECHNOLOGY, 2021, 112
[6]   Comparative advantages of a type-II superlattice barrier over an AIGaSb barrier for enhanced performance of InAs/GaSb LWIR nBn photodetectors [J].
Lee, Hyun-Jin ;
Jang, Ahreum ;
Kim, Young Ho ;
Jung, Han ;
Bidenko, Pavlo ;
Kim, Sanghyeon ;
Kim, Minje ;
Nah, Junghyo .
OPTICS LETTERS, 2021, 46 (16) :3877-3880
[7]   Electronic band structure of InAs/InAsSb type-II superlattice for HOT LWIR detectors [J].
Manyk, T. ;
Michalczewski, K. ;
Murawski, K. ;
Grodecki, K. ;
Rutkowski, J. ;
Martyniuk, P. .
RESULTS IN PHYSICS, 2018, 11 :1119-1123
[8]   Barrier infrared detectors [J].
Martyniuk, P. ;
Kopytko, M. ;
Rogalski, A. .
OPTO-ELECTRONICS REVIEW, 2014, 22 (02) :127-146
[9]   Intensity- and Temperature-Dependent Carrier Recombination in InAs/InAs1-xSbx Type-II Superlattices [J].
Olson, B. V. ;
Kadlec, E. A. ;
Kim, J. K. ;
Klem, J. F. ;
Hawkins, S. D. ;
Shaner, E. A. ;
Flatte, M. E. .
PHYSICAL REVIEW APPLIED, 2015, 3 (04)
[10]   Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice [J].
Olson, B. V. ;
Shaner, E. A. ;
Kim, J. K. ;
Klem, J. F. ;
Hawkins, S. D. ;
Murray, L. M. ;
Prineas, J. P. ;
Flatte, M. E. ;
Boggess, T. F. .
APPLIED PHYSICS LETTERS, 2012, 101 (09)