Self-assembling manifolds in single-cell RNA sequencing data
被引:39
|
作者:
Tarashansky, Alexander J.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USAStanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Tarashansky, Alexander J.
[1
]
Xue, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USAStanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Xue, Yuan
[1
]
Li, Pengyang
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USAStanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Li, Pengyang
[1
]
Quake, Stephen R.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
Chan Zuckerberg Biohub, San Francisco, CA USAStanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Quake, Stephen R.
[1
,2
,3
]
Wang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USAStanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Wang, Bo
[1
,4
]
机构:
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Chan Zuckerberg Biohub, San Francisco, CA USA
[4] Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA
来源:
ELIFE
|
2019年
/
8卷
关键词:
GENE-EXPRESSION;
SEQ;
DYNAMICS;
D O I:
10.7554/eLife.48994
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Single-cell RNA sequencing has spurred the development of computational methods that enable researchers to classify cell types, delineate developmental trajectories, and measure molecular responses to external perturbations. Many of these technologies rely on their ability to detect genes whose cell-to-cell variations arise from the biological processes of interest rather than transcriptional or technical noise. However, for datasets in which the biologically relevant differences between cells are subtle, identifying these genes is challenging. We present the self-assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify gene relevance and improve dimensionality reduction. We demonstrate its advantages over other state-of-the-art methods with experimental validation in identifying novel stem cell populations of Schistosoma mansoni, a prevalent parasite that infects hundreds of millions of people. Extending our analysis to a total of 56 datasets, we show that SAM is generalizable and consistently outperforms other methods in a variety of biological and quantitative benchmarks.
机构:
German Canc Res Ctr, Single Cell Open Lab, Heidelberg, Germany
Bioquant, Single cell Open Lab, Heidelberg, GermanyGerman Canc Res Ctr, Single Cell Open Lab, Heidelberg, Germany
Sant, Pooja
Rippe, Karsten
论文数: 0引用数: 0
h-index: 0
机构:
German Canc Res Ctr, Div Chromatin Networks, Heidelberg, Germany
Bioquant, Div Chromatin Networks, Heidelberg, GermanyGerman Canc Res Ctr, Single Cell Open Lab, Heidelberg, Germany
Rippe, Karsten
Mallm, Jan-Philipp
论文数: 0引用数: 0
h-index: 0
机构:
German Canc Res Ctr, Single Cell Open Lab, Heidelberg, Germany
Bioquant, Single cell Open Lab, Heidelberg, GermanyGerman Canc Res Ctr, Single Cell Open Lab, Heidelberg, Germany