Global solution in a weak energy class for Klein-Gordon-Schrodinger system

被引:0
作者
Shi, Qihong [1 ]
Jia, Yaqian [1 ]
Wang, Xunyang [1 ,2 ]
机构
[1] Lanzhou Univ Technol, Dept Math, Lanzhou 730050, Peoples R China
[2] State Grid Gansu Elect Power Res Inst, Lanzhou 730070, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 30卷 / 02期
关键词
KGS system; weak solution; global wellposedness; energy space; CAUCHY-PROBLEM; EQUATIONS; SPACE;
D O I
10.3934/era.2022033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the possible singularity of stationary state, we revisit the initial boundary value problem of the classical Klein-Gordon-Schrodinger (KGS) system in one space dimension. The well-posedness is established in a class of Sobolev NLS solutions together with exponentially growing KG solutions.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 19 条
[1]   Gagliardo-Nirenberg inequalities involving the gradient L2-norm [J].
Agueh, Martial .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (13-14) :757-762
[2]  
Baillon J., 1978, CONT DEV CONTINUUM M, P37
[3]   A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schrodinger equations in the nonrelativistic limit regime [J].
Bao, Weizhu ;
Zhao, Xiaofei .
NUMERISCHE MATHEMATIK, 2017, 135 (03) :833-873
[4]   Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrodinger systems [J].
Colliander, James ;
Holmer, Justin ;
Tzirakis, Nikolaos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4619-4638
[5]   COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2. [J].
FUKUDA, I ;
TSUTSUMI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) :358-378
[6]   YUKAWA-COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS IN 3 SPACE DIMENSIONS [J].
FUKUDA, I ;
TSUTSUMI, M .
PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06) :402-405
[7]  
Fukuda I, 1975, B SCI ENG LAB WASEDA, V69, P51
[8]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR SCHRODINGER-EQUATION REVISITED [J].
GINIBRE, J ;
VELO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (04) :309-327
[9]   ON THE GLOBAL STRONG SOLUTIONS OF COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS [J].
HAYASHI, N ;
VONWAHL, W .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) :489-497
[10]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113