Efficient selenocysteine-dependent reduction of toxoflavin by mammalian thioredoxin reductase

被引:18
作者
Gencheva, Radosveta [1 ]
Cheng, Qing [1 ]
Arner, Elias S. J. [1 ]
机构
[1] Karolinska Inst, Div Biochem, Dept Med Biochem & Biophys, SE-17177 Stockholm, Sweden
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2018年 / 1862卷 / 11期
基金
瑞典研究理事会;
关键词
Toxoflavin; Thioredoxin reductase; Substrate; Redox cycling; PROTEIN-TYROSINE PHOSPHATASES; SMALL-MOLECULE INHIBITORS; GLUTATHIONE-REDUCTASE; REDOX REGULATION; OXIDIZED PTP1B; SELENOPROTEIN; SYSTEM; RESIDUE; CANCER; PTEN;
D O I
10.1016/j.bbagen.2018.05.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Toxoflavin (1,6-dimethylpyrimido [5,4-e] [1,2,4]triazine-5,7-dione; xanthothricin) is a well-known natural toxin of the pyrimidinetriazinedione type that redox cycles with oxygen under reducing conditions. In mammalian systems, toxoflavin is an inhibitor of Wnt signaling as well as of SIRT1 and SIRT2 activities, but other molecular targets in mammalian cells have been scarcely studied. Interestingly, in a library of nearly 400,000 compounds (PubChem assay ID 588456), toxoflavin was identified as one out of only 56 potential substrates of the mammalian selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1). This activity was here examined in further detail. Methods: Kinetic parameters in interactions of toxoflavin with rat or human TrxR isoenzymes were determined and compared with those of juglone (5-Hydroxy-1,4-naphthoquinone; walnut toxin) and 9,10-phenanthrene quinone. Selenocysteine dependence was examined using Sec-to-Cys and Sec-to-Ser substituted variants of recombinant rat TrxR1. Results: Toxoflavin was confirmed as an efficient substrate for TrxR. Rat and human cytosolic TrxR1 supported NADPH-dependent redox cycling coupled to toxoflavin reduction, accompanied by H2O2 production under aerobic conditions. Apparent kinetic parameters for the initial rates of reduction showed that rat TrxR1 displayed higher apparent turnover (k(cat) = 1700 +/- 330 min(-1)) than human TrxR1 (k(cat) = 1100 +/- 82 min(-1)) but also a higher Km (K-m = 24 +/- 4.3 mu M for human TrxR1 versus K-m = 54 +/- 18 mu M for rat TrxR1). Human TrxR2 (TXNRD2) was less efficient in reduction of toxoflavin (K-m = 280 +/- 110 mu M and k(cat) = 740 +/- 240 min(-1)). The activity was absolutely dependent upon selenocysteine (Sec). Toxoflavin was also a subversive substrate indirectly inhibiting reduction of other substrates of TrxR1. Conclusions: Our results identify toxoflavin as an efficient redox cycling substrate of mammalian TrxR enzymes, in a strict Sec-dependent manner. General significance: The interactions of toxoflavin with mammalian TrxR isoenzymes can help to explain parts of the molecular mechanisms giving rise to the well-known toxicity as well as pro-oxidant properties of this toxin.
引用
收藏
页码:2511 / 2517
页数:7
相关论文
共 50 条
[41]   Mitochondrial thioredoxin reductase in bovine adrenal cortex - Its purification, properties, nucleotide/amino acid sequences, and identification of selenocysteine [J].
Watabe, S ;
Makino, Y ;
Ogawa, K ;
Hiroi, T ;
Yamamoto, Y ;
Takahahsi, SY .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 264 (01) :74-84
[42]   Selective Targeting of Selenocysteine in Thioredoxin Reductase by the Half Mustard 2-Chloroethyl Ethyl Sulfide in Lung Epithelial Cells [J].
Jan, Yi-Hua ;
Heek, Diane E. ;
Gray, Joshua P. ;
Zheng, Haiyan ;
Casillas, Robert P. ;
Laskin, Debra L. ;
Laskin, Jeffrey D. .
CHEMICAL RESEARCH IN TOXICOLOGY, 2010, 23 (06) :1045-1053
[43]   Tandem use of selenocysteine: adaptation of a selenoprotein glutaredoxin for reduction of selenoprotein methionine sulfoxide reductase [J].
Kim, Moon-Jung ;
Lee, Byung Cheon ;
Jeong, Jaeho ;
Lee, Kong-Joo ;
Hwang, Kwang Yeon ;
Gladyshev, Vadim N. ;
Kim, Hwa-Young .
MOLECULAR MICROBIOLOGY, 2011, 79 (05) :1194-1203
[44]   Manumycin A Is a Potent Inhibitor of Mammalian Thioredoxin Reductase-1 (TrxR-1) [J].
Tuladhar, Anupama ;
Rein, Kathleen S. .
ACS MEDICINAL CHEMISTRY LETTERS, 2018, 9 (04) :318-322
[45]   Ethaselen: a potent mammalian thioredoxin reductase 1 inhibitor and novel organoselenium anticancer agent [J].
Wang, Lihui ;
Yang, Zhiyu ;
Fu, Jianing ;
Yin, Hanwei ;
Xiong, Kun ;
Tan, Qiang ;
Jin, Hongwei ;
Li, Jing ;
Wang, Tianyu ;
Tang, Wanchen ;
Yin, Jin ;
Cai, Gaoxiong ;
Liu, Mi ;
Kehr, Sebastian ;
Becker, Katja ;
Zeng, Huihui .
FREE RADICAL BIOLOGY AND MEDICINE, 2012, 52 (05) :898-908
[46]   Inhibition of mammalian thioredoxin reductase by black tea and its constituents: Implications for anticancer actions [J].
Du, Yatao ;
Wu, Yunfei ;
Cao, Xueli ;
Cui, Wei ;
Zhang, Huihui ;
Tian, Weixi ;
Ji, Mingjuan ;
Holmgren, Arne ;
Zhong, Liangwei .
BIOCHIMIE, 2009, 91 (03) :434-444
[47]   Inhibitory effect of green tea extract and (-)-epigallocatechin-3-gallate on mammalian thioredoxin reductase and HeLa cell viability [J].
Wang, Yan ;
Zhang, Huihui ;
Holmgren, Arne ;
Tian, Weixi ;
Zhong, Liangwei .
ONCOLOGY REPORTS, 2008, 20 (06) :1479-1487
[48]   A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase [J].
Kirkensgaard, Kristine G. ;
Hagglund, Per ;
Shahpiri, Azar ;
Finnie, Christine ;
Henriksen, Anette ;
Svensson, Birte .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (04) :607-619
[49]   A Reexamination of Thioredoxin Reductase from Thermoplasma acidophilum, a Thermoacidophilic Euryarchaeon, Identifies It as an NADH-Dependent Enzyme [J].
Susanti, Dwi ;
Loganathan, Usha ;
Compton, Austin ;
Mukhopadhyay, Biswarup .
ACS OMEGA, 2017, 2 (08) :4180-4187
[50]   Thioredoxin Cross-Linking by Nitrogen Mustard in Lung Epithelial Cells: Formation of Multimeric Thioredoxin/Thioredoxin Reductase Complexes and Inhibition of Disulfide Reduction [J].
Jan, Yi-Hua ;
Heck, Diane E. ;
Casillas, Robert P. ;
Laskin, Debra L. ;
Laskin, Jeffrey D. .
CHEMICAL RESEARCH IN TOXICOLOGY, 2015, 28 (11) :2091-2103