Efficient selenocysteine-dependent reduction of toxoflavin by mammalian thioredoxin reductase

被引:18
|
作者
Gencheva, Radosveta [1 ]
Cheng, Qing [1 ]
Arner, Elias S. J. [1 ]
机构
[1] Karolinska Inst, Div Biochem, Dept Med Biochem & Biophys, SE-17177 Stockholm, Sweden
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2018年 / 1862卷 / 11期
基金
瑞典研究理事会;
关键词
Toxoflavin; Thioredoxin reductase; Substrate; Redox cycling; PROTEIN-TYROSINE PHOSPHATASES; SMALL-MOLECULE INHIBITORS; GLUTATHIONE-REDUCTASE; REDOX REGULATION; OXIDIZED PTP1B; SELENOPROTEIN; SYSTEM; RESIDUE; CANCER; PTEN;
D O I
10.1016/j.bbagen.2018.05.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Toxoflavin (1,6-dimethylpyrimido [5,4-e] [1,2,4]triazine-5,7-dione; xanthothricin) is a well-known natural toxin of the pyrimidinetriazinedione type that redox cycles with oxygen under reducing conditions. In mammalian systems, toxoflavin is an inhibitor of Wnt signaling as well as of SIRT1 and SIRT2 activities, but other molecular targets in mammalian cells have been scarcely studied. Interestingly, in a library of nearly 400,000 compounds (PubChem assay ID 588456), toxoflavin was identified as one out of only 56 potential substrates of the mammalian selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1). This activity was here examined in further detail. Methods: Kinetic parameters in interactions of toxoflavin with rat or human TrxR isoenzymes were determined and compared with those of juglone (5-Hydroxy-1,4-naphthoquinone; walnut toxin) and 9,10-phenanthrene quinone. Selenocysteine dependence was examined using Sec-to-Cys and Sec-to-Ser substituted variants of recombinant rat TrxR1. Results: Toxoflavin was confirmed as an efficient substrate for TrxR. Rat and human cytosolic TrxR1 supported NADPH-dependent redox cycling coupled to toxoflavin reduction, accompanied by H2O2 production under aerobic conditions. Apparent kinetic parameters for the initial rates of reduction showed that rat TrxR1 displayed higher apparent turnover (k(cat) = 1700 +/- 330 min(-1)) than human TrxR1 (k(cat) = 1100 +/- 82 min(-1)) but also a higher Km (K-m = 24 +/- 4.3 mu M for human TrxR1 versus K-m = 54 +/- 18 mu M for rat TrxR1). Human TrxR2 (TXNRD2) was less efficient in reduction of toxoflavin (K-m = 280 +/- 110 mu M and k(cat) = 740 +/- 240 min(-1)). The activity was absolutely dependent upon selenocysteine (Sec). Toxoflavin was also a subversive substrate indirectly inhibiting reduction of other substrates of TrxR1. Conclusions: Our results identify toxoflavin as an efficient redox cycling substrate of mammalian TrxR enzymes, in a strict Sec-dependent manner. General significance: The interactions of toxoflavin with mammalian TrxR isoenzymes can help to explain parts of the molecular mechanisms giving rise to the well-known toxicity as well as pro-oxidant properties of this toxin.
引用
收藏
页码:2511 / 2517
页数:7
相关论文
共 50 条
  • [1] Three-dimensional structure of a mammalian thioredoxin reductase: Implications for mechanism and evolution of a selenocysteine-dependent enzyme
    Sandalova, T
    Zhong, LW
    Lindqvist, Y
    Holmgren, A
    Schneider, G
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) : 9533 - 9538
  • [2] Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic
    Ren, Xiaoyuan
    Zou, Lili
    Lu, Jun
    Holmgren, Arne
    FREE RADICAL BIOLOGY AND MEDICINE, 2018, 127 : 238 - 247
  • [3] Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase
    Marcocci, L
    Flohé, L
    Packer, L
    BIOFACTORS, 1997, 6 (03) : 351 - 358
  • [4] Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase
    Arner, ESJ
    Nordberg, J
    Holmgren, A
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 225 (01) : 268 - 274
  • [5] Reduction of Tetrathionate by Mammalian Thioredoxin Reductase
    Narayan, Vivek
    Kudva, Avinash K.
    Prabhu, K. Sandeep
    BIOCHEMISTRY, 2015, 54 (33) : 5121 - 5124
  • [6] No Selenium Required: Reactions Catalyzed by Mammalian Thioredoxin Reductase That Are Independent of a Selenocysteine Residue
    Lothrop, Adam P.
    Ruggles, Erik L.
    Hondal, Robert J.
    BIOCHEMISTRY, 2009, 48 (26) : 6213 - 6223
  • [7] Selenium-dependent mammalian thioredoxin reductase
    Stadtman, TC
    FREE RADICAL BIOLOGY AND MEDICINE, 1998, 25 : S10 - S10
  • [8] Efficiency of Selenocysteine Incorporation in Human Thioredoxin Reductase
    Yarimizu, Junko
    Nakamura, Hajime
    Yodoi, Junji
    Takahashi, Kazuhiko
    ANTIOXIDANTS & REDOX SIGNALING, 2000, 2 (04) : 643 - 652
  • [9] Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism
    Schweizer, Ulrich
    Schlicker, Christine
    Braun, Doreen
    Koehrle, Josef
    Steegborn, Clemens
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (29) : 10526 - 10531
  • [10] SELENODIGLUTATHIONE IS A HIGHLY EFFICIENT OXIDANT OF REDUCED THIOREDOXIN AND A SUBSTRATE FOR MAMMALIAN THIOREDOXIN REDUCTASE
    BJORNSTEDT, M
    KUMAR, S
    HOLMGREN, A
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1992, 267 (12) : 8030 - 8034