The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity

被引:136
作者
Noda, Judith [1 ]
Brito, Nelida [1 ]
Gonzalez, Celedonio [1 ]
机构
[1] Univ La Laguna, Dept Bioquim & Biol Mol, E-38206 Tenerife, Spain
关键词
BIOSYNTHESIS-INDUCING ENDOXYLANASE; YEAST PICHIA-PASTORIS; CELL-DEATH; SCLEROTINIA-SCLEROTIORUM; HYPERSENSITIVE RESPONSE; FUNGAL ELICITOR; CV XANTHI; PROTEIN; EXPRESSION; TOMATO;
D O I
10.1186/1471-2229-10-38
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: The Botrytis cinerea xylanase Xyn11A has been previously shown to be required for full virulence of this organism despite its poor contribution to the secreted xylanase activity and the low xylan content of B. cinerea hosts. Intriguingly, xylanases from other fungi have been shown to have the property, independent of the xylan degrading activity, to induce necrosis when applied to plant tissues, so we decided to test the hypothesis that secreted Xyn11A contributes to virulence by promoting the necrosis of the plant tissue surrounding the infection, therefore facilitating the growth of this necrotroph. Results: We show here that Xyn11A has necrotizing activity on plants and that this capacity is conserved in site-directed mutants of the protein lacking the catalytic activity. Besides, Xyn11A contributes to the infection process with the necrotizing and not with the xylan hydrolyzing activity, as the catalytically-impaired Xyn11A variants were able to complement the lower virulence of the xyn11A mutant. The necrotizing activity was mapped to a 30-amino acids peptide in the protein surface, and this region was also shown to mediate binding to tobacco spheroplasts by itself. Conclusions: The main contribution of the xylanase Xyn11A to the infection process of B. cinerea is to induce necrosis of the infected plant tissue. A conserved 30-amino acids region on the enzyme surface, away from the xylanase active site, is responsible for this effect and mediates binding to plant cells.
引用
收藏
页数:15
相关论文
共 41 条
[1]   AN ETHYLENE BIOSYNTHESIS-INDUCING ENDOXYLANASE ELICITS ELECTROLYTE LEAKAGE AND NECROSIS IN NICOTIANA-TABACUM CV XANTHI LEAVES [J].
BAILEY, BA ;
DEAN, JFD ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1990, 94 (04) :1849-1854
[2]   SENSITIVITY TO AN ETHYLENE BIOSYNTHESIS-INDUCING ENDOXYLANASE IN NICOTIANA-TABACUM-L CV XANTHI IS CONTROLLED BY A SINGLE DOMINANT GENE [J].
BAILEY, BA ;
KORCAK, RF ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1993, 101 (03) :1081-1088
[3]   INTERLABORATORY TESTING OF METHODS FOR ASSAY OF XYLANASE ACTIVITY [J].
BAILEY, MJ ;
BIELY, P ;
POUTANEN, K .
JOURNAL OF BIOTECHNOLOGY, 1992, 23 (03) :257-270
[4]   EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2 [J].
Bar, Maya ;
Avni, Adi .
PLANT JOURNAL, 2009, 59 (04) :600-611
[5]   O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris [J].
Boraston, AB ;
Sandercock, LE ;
Warren, RAJ ;
Kilburn, DG .
JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 5 (01) :29-36
[6]   The endo-β-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea [J].
Brito, N ;
Espino, JJ ;
González, C .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (01) :25-32
[7]   VARIATIONS IN PLOIDY AMONG ISOLATES OF BOTRYTIS-CINEREA - IMPLICATIONS FOR GENETIC AND MOLECULAR ANALYSES [J].
BUTTNER, P ;
KOCH, F ;
VOIGT, K ;
QUIDDE, T ;
RISCH, S ;
BLAICH, R ;
BRUCKNER, B ;
TUDZYNSKI, P .
CURRENT GENETICS, 1994, 25 (05) :445-450
[8]   Heterologous protein expression in the methylotrophic yeast Pichia pastoris [J].
Cereghino, JL ;
Cregg, JM .
FEMS MICROBIOLOGY REVIEWS, 2000, 24 (01) :45-66
[9]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814
[10]   Botrytis cinerea virulence factors:: new insights into a necrotrophic and polyphageous pathogen [J].
Choquer, Mathias ;
Fournier, Elisabeth ;
Kunz, Caroline ;
Levis, Caroline ;
Pradier, Jean-Marc ;
Simon, Adeline ;
Viaud, Muriel .
FEMS MICROBIOLOGY LETTERS, 2007, 277 (01) :1-10