Psychrophiles and astrobiology: Microbial life of frozen worlds

被引:0
|
作者
Pikuta, EV [1 ]
Hoover, RB [1 ]
机构
[1] UAH, Ctr Space Plasma & Aeronaut Res, Astrobiol Grp, Huntsville, AL 35899 USA
来源
INSTRUMENTS, METHODS, AND MISSIONS FOR ASTROBIOLOGY VI | 2002年 / 4939卷
关键词
Fox permafrost tunnel; Mars; psychrophiles; psychrotrophs; astrobiology; anaerobes; microbial extremophiles;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2-4 degreesC for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved microorganisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 degreesC. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条
  • [41] Bacterial cellulose may provide the microbial-life biosignature in the rock records
    Zaets, I.
    Podolich, O.
    Kukharenko, O.
    Reshetnyak, G.
    Shpylova, S.
    Sosnin, M.
    Khirunenko, L.
    Kozyrovska, N.
    de Vera, J. -P.
    ADVANCES IN SPACE RESEARCH, 2014, 53 (05) : 828 - 835
  • [42] Microbial Characterization of Arctic Glacial Ice Cores with a Semiautomated Life Detection System
    Touchette, David
    Maggiori, Catherine
    Altshuler, Ianina
    Tettenborn, Alex
    Bourdages, Louis-Jacques
    Magnuson, Elisse
    Blenner-Hassett, Olivia
    Raymond-Bouchard, Isabelle
    Ellery, Alex
    Whyte, Lyle. G. G.
    ASTROBIOLOGY, 2023, 23 (07) : 756 - 768
  • [43] Laser-Induced Fluorescence Emission (LIFE): In Situ Nondestructive Detection of Microbial Life in the Ice Covers of Antarctic Lakes
    Storrie-Lombardi, Michael C.
    Sattler, Birgit
    ASTROBIOLOGY, 2009, 9 (07) : 659 - 672
  • [44] Editorial: Revisiting the limits of plant life - plant adaptations to extreme terrestrial environments relating to astrobiology and space biology
    Zupanska, Agata K.
    Arena, Carmen
    Zuniga, Gustavo E.
    Casanova-Katny, Angelica
    Turnbull, Johanna D.
    Bravo, Leon A.
    Ramos, Patricio
    Sun, Hang
    Shishov, Vladimir V.
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [45] Stories of Astrobiology, SETI, and UAPs: Science and the Search for Extraterrestrial Life in German News Media From 2009 to 2022
    Schwarz, Andreas
    Seidl, Eva
    SCIENCE COMMUNICATION, 2023, 45 (06) : 788 - 823
  • [46] What Is Life-and When Do We Search for It on Other Worlds
    McKay, Christopher P.
    ASTROBIOLOGY, 2020, 20 (02) : 163 - 166
  • [48] Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars
    Naz, Neveda
    Liu, Dongyu
    Harandi, Bijan F. F.
    Kounaves, Samuel P. P.
    ASTROBIOLOGY, 2022, 22 (10) : 1210 - 1221
  • [49] Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars
    Naz, Neveda
    Liu, Dongyu
    Harandi, Bijan F.
    Kounaves, Samuel P.
    ASTROBIOLOGY, 2022, 0 (00) : 1 - 12
  • [50] Is Extraterrestrial Life Suppressed on Subsurface Ocean Worlds due to the Paucity of Bioessential Elements?
    Lingam, Manasvi
    Loeb, Abraham
    ASTRONOMICAL JOURNAL, 2018, 156 (04)